
JBoss Messaging 2.0 User Manual

Setting the Standard for High Performance Messaging

Table of Contents
1. Preface ...1
2. Messaging Concepts ...2

2.1. Messaging Concepts ...2
2.2. Messaging styles ..2

2.2.1. The Message Queue Pattern ...3
2.2.2. The Publish-Subscribe Pattern ..3

2.3. Delivery guarantees ..3
2.4. Transactions ..4
2.5. Durability ..4
2.6. Messaging APIs and protocols ..4

2.6.1. Java Message Service (JMS) ..4
2.6.2. System specific APIs ...5
2.6.3. STOMP ..5
2.6.4. AMQP ..5
2.6.5. REST ...5

2.7. High Availability ...5
2.8. Clusters ...6
2.9. Bridges and routing ..6

3. Architecture ..7
3.1. Core Architecture ...7
3.2. JBoss Messaging embedded in your own application ..9
3.3. JBoss Messaging integrated with a JEE application server ..9
3.4. JBoss Messaging stand-alone server ..10

4. Using the Server ...12
4.1. Starting and Stopping the standalone server ...12
4.2. Server JVM settings ...12
4.3. Server classpath ...13
4.4. Library Path ...13
4.5. System properties ...13
4.6. Configuration files ...14
4.7. JBoss Microcontainer Beans File ...15
4.8. The main configuration file. ..17

5. Using JMS ..18
5.1. A simple ordering system ...18
5.2. JMS Server Configuration ..18
5.3. JNDI configuration ...19
5.4. The code ..20
5.5. Directly instantiating JMS Resources without using JNDI ...21
5.6. Setting The Client ID ...22
5.7. Setting The Batch Size for DUPS_OK ...22
5.8. Setting The Transaction Batch Size ...22

6. Using Core ...23
6.1. Core Messaging Concepts ...23

6.1.1. Message ..23

ii

6.1.2. Address ..23
6.1.3. Queue ...24
6.1.4. ClientSessionFactory ...24
6.1.5. ClientSession ..24
6.1.6. ClientConsumer ..24
6.1.7. ClientProducer ..25

6.2. A simple example of using Core ..25
7. Mapping JMS Concepts to the Core API ..26
8. The Client Classpath ...27

8.1. Pure Core Client ...27
8.2. JMS Client ...27
8.3. JNDI ...27

9. Examples ...28
9.1. JMS Examples ...28

9.1.1. Application-Layer Failover ..28
9.1.2. Automatic (Transparent) Failover ...28
9.1.3. Automatic Reconnect ...29
9.1.4. Browser ..29
9.1.5. Core Bridge Example ..29
9.1.6. Client Kickoff ...29
9.1.7. Client Side Load-Balancing ...29
9.1.8. Clustered Queue ..30
9.1.9. Clustered Standalone ...30
9.1.10. Clustered Topic ...30
9.1.11. Dead Letter ...30
9.1.12. Delayed Redelivery ...30
9.1.13. Divert ...30
9.1.14. Durable Subscription ...31
9.1.15. Embedded ...31
9.1.16. HTTP Transport ..31
9.1.17. Instantiate JMS Objects Directly ...31
9.1.18. Interceptor ..31
9.1.19. JAAS ..31
9.1.20. JMX Management ...31
9.1.21. Large Message ..31
9.1.22. Last-Value Queue ..32
9.1.23. Load Balanced Clustered Queue ...32
9.1.24. Management ...32
9.1.25. Management Notification ...32
9.1.26. Message Consumer Rate Limiting ..32
9.1.27. Message Counter ...32
9.1.28. Message Expiration ...33
9.1.29. Message Group ...33
9.1.30. Message Producer Rate Limiting ..33
9.1.31. Message Priority ..33
9.1.32. Message Redistribution ..33
9.1.33. No Consumer Buffering ...34
9.1.34. Paging ..34
9.1.35. Pre-Acknowledge ..34

JBoss Messaging 2.0 User Manual

iii

9.1.36. Queue ...34
9.1.37. Queue Requestor ...34
9.1.38. Queue with Message Selector ...34
9.1.39. Request-Response ...34
9.1.40. Scheduled Message ..35
9.1.41. Security ..35
9.1.42. Send Acknowledgements ...35
9.1.43. Static Message Selector ..35
9.1.44. Static Message Selector Using JMS ..35
9.1.45. SSL Transport ...35
9.1.46. Symmetric Cluster ...35
9.1.47. Temporary Queue ..35
9.1.48. Topic ..35
9.1.49. Topic Hierarchy ..36
9.1.50. Topic Selector 1 ..36
9.1.51. Topic Selector 2 ..36
9.1.52. Transactional Session ...36
9.1.53. XA Heuristic ...36
9.1.54. XA Receive ...36
9.1.55. XA Send ...36
9.1.56. XA with Transaction Manager ..36

9.2. Core API Examples ..36
9.2.1. Embedded ...37

9.3. Java EE Examples ..37
9.3.1. EJB/JMS Transaction ..37
9.3.2. HAJNDI (High Availability) ..37
9.3.3. Resource Adapter Configuration ...37
9.3.4. JMS Bridge ...37
9.3.5. MDB (Message Driven Bean) ..37
9.3.6. Servlet Transport ...37
9.3.7. Servlet SSL Transport ..37
9.3.8. XA Recovery ..37

10. Routing Messages With Wild Cards ...38
11. Understanding the JBoss Messaging Wildcard Syntax ...39
12. Filter Expressions ..40
13. Persistence ..41

13.1. Configuring the bindings journal ...42
13.2. Configuring the message journal ...43
13.3. Installing AIO ..45
13.4. Configuring JBoss Messaging for Zero Persistence ...45

14. Configuring the Transport ..46
14.1. Understanding Acceptors ..46
14.2. Understanding Connectors ..47
14.3. Configuring the transport directly from the client side. ..47
14.4. Configuring the Netty transport ...48

14.4.1. Configuring Netty TCP ..48
14.4.2. Configuring Netty SSL ..50
14.4.3. Configuring Netty HTTP ..50
14.4.4. Configuring Netty Servlet ..50

JBoss Messaging 2.0 User Manual

iv

15. Dead Connections and Session Multiplexing ...53
15.1. Cleaning up Dead Connection Resources on the Server ...53
15.2. Detecting failure from the client side. ..54
15.3. Session Multiplexing ..55

16. Resource Manager Configuration ...56
17. Flow Control ..57

17.1. Consumer Flow Control ..57
17.1.1. Window-Based Flow Control ...57

17.1.1.1. Using Core API ..58
17.1.1.2. Using JMS ...58

17.1.2. Rate limited flow control ..58
17.1.2.1. Using Core API ..59
17.1.2.2. Using JMS ...59

17.2. Producer flow control ...59
17.2.1. Window based flow control ..59
17.2.2. Rate limited flow control ..60

17.2.2.1. Using Core API ..60
17.2.2.2. Using JMS ...60

18. Command Buffering ..61
19. Guarantees of Transactional and Non-Transactional Sends and Asynchronous Send Acknowledgements
...62

19.1. Guarantees of Transaction Completion ..62
19.2. Guarantees of Non Transactional Message Sends ...62
19.3. Guarantees of Non Transactional Acknowledgements ...63
19.4. Asynchronous Send Acknowledgements ..63

19.4.1. Asynchronous Send Acknowledgements ...64
20. Message Redelivery and Undelivered Messages ..65

20.1. Delayed Redelivery ..65
20.1.1. Configuring Delayed Redelivery ...65
20.1.2. Example ..66

20.2. Dead Letter Addresses ..66
20.2.1. Configuring Dead Letter Addresses ..66
20.2.2. Dead Letter Properties ...66
20.2.3. Example ..67

20.3. Delivery Count Persistence ...67
21. Message Expiry ..68

21.1. Message Expiry ..68
21.2. Configuring Expiry Addresses ...68
21.3. Configuring The Expiry Reaper Thread ...69
21.4. Example ..69

22. Large Messages ..70
22.1. Configuring the server ..70
22.2. Setting the limits ..70

22.2.1. Using Core API ...71
22.2.2. Using JMS ..71

22.3. Streaming large messages ...71
22.3.1. Streaming over Core API ...72
22.3.2. Streaming over JMS ..72

22.4. Streaming Alternative ...73

JBoss Messaging 2.0 User Manual

v

22.5. Other Types of Messages ..74
22.6. Resending a large message ..74
22.7. Large message example ..74

23. Paging ..75
23.1. Page Files ..75
23.2. Global Paging Mode ...75

23.2.1. Configuration ..75
23.3. Address Paging Mode ...76

23.3.1. Configuration ..76
23.4. Caution with Addresses with Multiple Queues ...77
23.5. Example ..77

24. Queue Attributes ...78
24.1. Predefined Queues ..78
24.2. Using the API ..79
24.3. Configuring Queues Via Address Settings ..79

25. Scheduled Messages ..81
25.1. Scheduled Delivery Property ...81
25.2. Example ..81

26. Last-Value Queues ..82
26.1. Configuring Last-Value Queues ..82
26.2. Using Last-Value Property ..82
26.3. Example ..83

27. Message Grouping ..84
27.1. Using Core API ..84
27.2. Using JMS ...84
27.3. Example ..85

28. Pre-Acknowledge Mode ..86
28.1. Using PRE_ACKNOWLEDGE ...86
28.2. Example ..87

29. Management ...88
29.1. The Management API ...88

29.1.1. Core Management API ...89
29.1.1.1. Core Server Management ..89
29.1.1.2. Core Address Management ..89
29.1.1.3. Core Queue Management ..90
29.1.1.4. Other Core Resources Management ...91

29.1.2. JMS Management API ...92
29.1.2.1. JMS Server Management ...92
29.1.2.2. JMS ConnectionFactory Management ..92
29.1.2.3. JMS Queue Management ...93
29.1.2.4. JMS Topic Management ..94

29.2. Using Management Via JMX ..94
29.2.1. Configuring JMX ..95

29.2.1.1. MBeanServer configuration ...95
29.2.2. Example ..95

29.3. Using Management Via Core API ...95
29.3.1. Configuring Core Management ...96

29.4. Using Management Via JMS ...97
29.4.1. Configuring JMS Management ...98

JBoss Messaging 2.0 User Manual

vi

29.4.2. Example ..98
29.5. Management Cluster Credentials ...98
29.6. Management Notifications ..99

29.6.1. JMX Notifications ...99
29.6.2. Core Messages Notifications ..99

29.6.2.1. Configuring The Core Management Notification Address99
29.6.3. JMS Messages Notifications ... 100
29.6.4. Example .. 100

29.7. Message Counters .. 100
29.7.1. Configuring Message Counters ... 101
29.7.2. Example .. 102

30. Security .. 103
30.1. Role based security for addresses .. 103
30.2. Secure Sockets Layer (SSL) Transport ... 105
30.3. Basic user credentials ... 105
30.4. Changing the security manager .. 105
30.5. JAAS Security Manager ... 106

30.5.1. Example .. 107
30.6. JBoss AS Security Manager .. 107
30.7. Changing the Management Password for Clustering ... 107

31. Application Server Integration and Java EE .. 108
31.1. Configuring Message Driven Beans ... 108

31.1.1. Using Container Managed Transactions .. 108
31.1.2. Using Bean Managed Transactions ... 109
31.1.3. Using Message Selectors with MDB's ... 110

31.2. Sending Messages from within J2EE components ... 111
31.3. Configuring the JCA Adapter .. 112

31.3.1. Adapter Global properties .. 113
31.3.2. Adapter Outbound configuration ... 115
31.3.3. Adapter Inbound configuration ... 116

31.4. High Availability JNDI (HA-JNDI) ... 116
31.5. The JMS Bridge ... 117

31.5.1. JMS Bridge Parameters .. 119
31.5.2. Source and Target Connection Factories .. 122
31.5.3. Source and Target Destination Factories .. 122
31.5.4. Quality Of Service ... 122

31.5.4.1. AT_MOST_ONCE ... 122
31.5.4.2. DUPLICATES_OK .. 122
31.5.4.3. ONCE_AND_ONLY_ONCE .. 122
31.5.4.4. Example ... 123

31.6. XA Recovery ... 123
31.6.1. XA Recovery Configuration ... 123

31.6.1.1. Configuration Settings ... 124
31.6.2. Example .. 125

32. Client Reconnection .. 126
33. Diverting and Splitting Message Flows ... 128

33.1. Exclusive Divert ... 128
33.2. Non-exclusive Divert .. 129

34. Core Bridges ... 130

JBoss Messaging 2.0 User Manual

vii

34.1. Configuring Bridges ... 130
35. Duplicate Message Detection ... 134

35.1. Using Duplicate Detection for Message Sending .. 134
35.2. Configuring the Duplicate ID Cache .. 135
35.3. Duplicate Detection and Bridges ... 136
35.4. Duplicate Detection and Cluster Connections ... 136
35.5. Duplicate Detection and Paging ... 136

36. Clusters .. 137
36.1. Clusters Overview .. 137
36.2. Server discovery ... 137

36.2.1. Broadcast Groups .. 138
36.2.2. Discovery Groups .. 139
36.2.3. Defining Discovery Groups on the Server ... 139
36.2.4. Discovery Groups on the Client Side ... 140

36.2.4.1. Configuring client discovery using JMS ... 140
36.2.4.2. Configuring client discovery using Core ... 140

36.3. Server-Side Message Load Balancing .. 141
36.3.1. Configuring Cluster Connections .. 141

36.4. Client-Side Load balancing ... 143
36.5. Specifying Members of a Cluster Explicitly ... 144

36.5.1. Specify List of Servers on the Client Side .. 144
36.5.1.1. Specifying List of Servers using JMS ... 145
36.5.1.2. Specifying List of Servers using the Core API .. 145

36.5.2. Specifying List of Servers to form a Cluster .. 146
36.6. Message Redistribution ... 146
36.7. Cluster topologies ... 147

36.7.1. Symmetric cluster .. 147
36.7.2. Chain cluster ... 148

37. High Availability and Failover ... 149
37.1. Server replication ... 149

37.1.1. Configuring live-backup pairs .. 149
37.1.2. Synchronization of live-backup pairs .. 150
37.1.3. Queue activation timeout .. 150

37.2. Automatic client failover .. 150
37.3. Application-level client failover .. 151

38. Libaio Native Libraries .. 152
38.1. Compiling the native libraries ... 152

38.1.1. Install requirements ... 152
38.1.2. Invoking the compilation .. 153

39. Thread management .. 154
39.1. Server-Side Thread Management ... 154

39.1.1. Server Scheduled Thread Pool .. 154
39.1.2. General Purpose Server Thread Pool ... 154
39.1.3. Expiry Reaper Thread .. 155
39.1.4. Asynchronous IO ... 155

39.2. Client-Side Thread Management ... 155
40. Logging .. 157

40.1. Log4j Configuration ... 157
40.2. Logging With The JBoss Application Server .. 157

JBoss Messaging 2.0 User Manual

viii

41. Embedding JBoss Messaging ... 158
41.1. POJO instantiation .. 158
41.2. Dependency Frameworks .. 159
41.3. Connecting to the Embedded JBoss Messaging .. 160

41.3.1. Core API ... 160
41.3.2. JMS API ... 160

41.4. JMS Embedding Example ... 161
42. Intercepting Operations ... 162

42.1. Implementing The Interceptors .. 162
42.2. Configuring The Interceptors .. 162
42.3. Example .. 162

43. Interoperability ... 164
43.1. Stomp and StompConnect ... 164
43.2. AMQP ... 164
43.3. REST .. 164

44. Performance Tuning .. 165
44.1. Tuning the journal .. 165
44.2. Tuning JMS ... 165
44.3. Other Tunings .. 166
44.4. Tuning Transport Settings ... 166
44.5. Tuning the VM ... 167
44.6. Avoiding Anti-Patterns ... 167

45. Configuration Reference .. 169
45.1. Server Configuration .. 169

45.1.1. jbm-configuration.xml ... 169
45.1.2. jbm-jms.xml .. 176

46. Project Information ... 180

JBoss Messaging 2.0 User Manual

ix

1
Preface

The goal of JBoss Messaging is simple and uncompromising; to bring unrivalled levels of performance and reliab-
ility to messaging, and to be the fastest, best featured and most scalable multi-protocol messaging system.

Why use JBoss Messaging? Here are just a few of the reasons:

• 100% open source software.

• Written in Java. Runs on any platform with a J2SE 5.0 JDK, that's everything from Windows desktops to IBM
mainframes.

• Superb performance. Our class beating high performance journal provides persistent messaging performance at
rates normally seen for non persistent messaging, our non persistent messaging performance rocks the boat too.

• Full feature set. All the features you'd expect in any serious messaging system, and others you won't find any-
where else.

• Elegant POJO based design with minimal third party dependencies. Run JBoss Messaging stand-alone, run it in
integrated in your favourite JEE application server, or run it embedded inside your own product.

• Seamless high availabilty. We provide server replication and completely transparent client failover so you don't
have to worry about coding your client specially for an HA environment.

• Hugely flexible clustering. Create clusters of servers that know how to load balance messages. Link geograph-
ically distributed clusters over unreliable connections to form a global network. Configure routing of messages
in a highly flexible way.

1

2
Messaging Concepts

JBoss Messaging is an asynchronous messaging system, an example of Message Oriented Middleware
[http://en.wikipedia.org/wiki/Message_oriented_middleware] , we'll just call them messaging systems in the re-
mainder of this book.

We'll first present a brief overview of what kind of things messaging systems do and and where they're useful, and
the kind of concepts you'll hear about in the messaging world.

If you're already familiar with what a messaging system is and what it's capable of, then you can skip this chapter.

2.1. Messaging Concepts

Messaging systems allow you to loosely couple heteregenous systems together, whilst typically providing reliabil-
ity, transactions, and many other features.

Unlike systems based on a Remote Procedure Call [http://en.wikipedia.org/wiki/Remote_procedure_call] (RPC)
pattern, messaging systems primarily use an asynchronous message passing pattern with no tight relationship
between requests and responses. Most messaging systems also support a request-response mode but this is not a
primary feature of messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of your hardware re-
sources, minimizing the amount of threads blocking on IO operations, and to use your network bandwidth to its full
capacity. With an RPC approach you have to wait for a response for each request you make so are limited by the
network round trip time, or latency of your network. With an asynchronous system you can pipeline flows of mes-
sages in different directions, so are limited by the network bandwidth not the latency. This typically allows you to
create much higher performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The senders and consumers
of messages are completely independent and know nothing of each other. This allows you to create flexible, loosely
coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely couples heterogeneous
systems together. Message buses often form the core of an Enterprise Service Bus
[http://en.wikipedia.org/wiki/Enterprise_service_bus]. (ESB). Using a message bus to de-couple disparate systems
can allow the system to grow and adapt. It also allows more flexibility add new systems or retire old ones since
they don't have brittle dependencies on each other.

2.2. Messaging styles

Messaging systems normally support two main styles of asynchronous messaging: message queue

2

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Message_queue

[http://en.wikipedia.org/wiki/Message_queue] messaging (also known as point-to-point messaging) and publish
subscribe [http://en.wikipedia.org/wiki/Publish_subscribe] messaging. We'll summarise them briefly here:

2.2.1. The Message Queue Pattern

With this type of messaging you send a message to a queue. The message is then typically persisted to provide a
guarantee of delivery, then some time later the messaging system delivers the message to a consumer. The con-
sumer then processes the message and when it is done, it acknowledges the message. Once the message is acknow-
ledged it disappears from the queue and is not available to be delivered again. If the system crashes before the mes-
saging server receives an acknowledgement from the consumer, then on recovery, the message will be available to
be delivered to a consumer again.

With point-to-point messaging, there can be many consumers on the queue but a particular message will only ever
be consumed by a maximum of one of them. Senders (also known as producers) to the queue are completely de-
coupled from receivers (also known as consumers) of the queue - they do not know of each others existence.

A classic example of point to point messaging would be an order queue in a company's book ordering system. Each
order is represented as a message which is sent to the order queue. There are many front end ordering systems
which send orders to the order queue. When a message arrives on the queue it is persisted - this ensures that if the
server crashes the order is not lost. There are many consumers on the order queue - each representing an instance of
an order processing component - these can be on different physical machines but consuming from the same queue.
The messaging system delivers each message to one and only one of the ordering processing components. Different
messages can be processed by order processors, but a single order is only processed by one order processor - this
ensures orders aren't processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the warehouse system and
then updates the order database with the order details. Once it's done that it acknowledges the message to tell the
server that the order message is done and can be forgotten about. Often the send to the warehouse system, update in
database and acknowledgement will be completed in a single transaction to ensure ACID
[http://en.wikipedia.org/wiki/ACID] properties.

2.2.2. The Publish-Subscribe Pattern

With publish-subscribe messaging many senders can send messages to an entity on the server, often called a topic
(e.g. in the JMS world).

There can be many subscriptions on a topic, each subscription receives a copy of each message sent to the topic.
This differs from the message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to the topic until the
subscriber consumes it.

An example of publish-subscribe messaging would be a news feed. As news articles are created by different editors
around the world they are sent to a news feed topic. There are many subscribers around the world who are inter-
ested in receiving news items - each one creates a subscription and the messaging system ensures that a copy of
each news message is delivered to each subscription.

2.3. Delivery guarantees

Messaging Concepts

3

http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/ACID

A key feature of most messaging systems is reliable messaging. With reliable messaging the server gives a guaran-
tee that the message will be delivered once and only once to each consumer of a queue or each durable subscription
of a topic, even in the event of system failure. This is crucial for many businesses, you don't want your orders ful-
filled more than once or your orders to be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to cope with duplic-
ate deliveries. The messaging system allows you to configure which delivery guarantees you require.

2.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in a single local
transaction. JBoss Messaging also supports the sending and acknowledgement of message as part of a large global
transaction - using the Java mapping of XA, JTA.

2.5. Durability

Messages are either durable or non durable. Durable messages will persisted in permanent storage and will survive
server failure. Non durable messages will not survive server failure or restart. Examples of durable messages might
be orders or trades, where they cannot be lost. An example of a non durable message might be a stock price update.
This is transitory and there's no need for it to survive a restart.

2.6. Messaging APIs and protocols

How do client applications interact with messaging systems in order to send and consume messages?

Several messaging systems provide their own proprietary APIs with which the client communicates with the mes-
saging system.

There are also some standard ways of operating with messaging systems and some emerging standards in this
space.

Let's take a brief look at these:

2.6.1. Java Message Service (JMS)

JMS [http://en.wikipedia.org/wiki/Java_Message_Service] is part of Sun's JEE specification. It's a Java API that
encapsulates both message queue and publish-subscribe messaging patterns. JMS is a lowest common denominator
specification - i.e. it was created to encapsulate common functionality of the already existing messaging systems
that were available at the time of its creation.

JMS is a very popular API and is implemented by most messaging systems. JMS is only available to clients run-
ning Java.

JMS does not define a standard wire format - it only defines a programmatic API so JMS clients and servers from
different vendors cannot interoperate since they will most likely use the vendor's own internal wire protocol.

Messaging Concepts

4

http://en.wikipedia.org/wiki/Java_Message_Service

JBoss Messaging provides a fully compliant JMS 1.1 API.

2.6.2. System specific APIs

Many systems provide their own programmatic API for which to interact with the messaging system. The advant-
age of this it allows the full set of system functionality to be exposed to the client application. API's like JMS are
not normally rich enough to expose all the extra features that most messaging systems provide.

JBoss Messaging provides its own core client API for clients to use if they wish to have access to functionality over
and above that accessible via the JMS API.

2.6.3. STOMP

STOMP [http://en.wikipedia.org/wiki/Streaming_Text_Orientated_Messaging_Protocol] is a very simple protocol
for interoperating with messaging systems. It defines a wire format, so theoretically any STOMP client can work
with any messaging system that supports STOMP. STOMP clients are available in many different programming
languages.

JBoss Messaging can be used by any STOMP client when using the StompConnect
[http://stomp.codehaus.org/StompConnect] broker which translates the STOMP protocol to the JMS API.

JBoss Messaging will be shortly implementing the STOMP protocol on the broker, thus avoiding having to use
StompConnect.

2.6.4. AMQP

AMQP [http://en.wikipedia.org/wiki/AMQP] is an emerging standard for interoperable messaging. It also defines a
wire format, so any AMQP client can work with any messaging system that supports AMQP. AMQP clients are
available in many different programming languages.

JBoss Messaging will shortly be implementing AMQP.

2.6.5. REST

REST [http://en.wikipedia.org/wiki/Representational_State_Transfer] approaches to messaging are showing a lot
interest recently. With a REST approach messaging resources are manipulated as resources defined by a URI and
typically using a simple set of operations on those resources, e.g. PUT, POST, GET etc. REST approaches to mes-
saging often use HTTP as their underlying protocol.

The advantage of a REST approach with HTTP is in its simplicity and the fact the internet is already tuned to deal
with HTTP optimally.

JBoss Messaging will shortly be implementing REST.

2.7. High Availability

Messaging Concepts

5

http://en.wikipedia.org/wiki/Streaming_Text_Orientated_Messaging_Protocol
http://stomp.codehaus.org/StompConnect
http://en.wikipedia.org/wiki/AMQP
http://en.wikipedia.org/wiki/Representational_State_Transfer

High Availability (HA) means that the system should remain operational after failure of one or more of the servers.
The degree of support for HA varies between various messaging systems.

Some messaging systems require you to deal with server side failure by writing some client side code which gets
called on event of server failure, and in which you are supposed to recreate your connections to another server.

JBoss Messaging provides 100% transparent failover where you don't have have to write any special client side
code to deal with failure. On failover JBoss Messaging will automatically fail over your client connections to an-
other server, and your client sessions can continue as if nothing happened.

For more information on HA, please see Chapter 37.

2.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters. Clusters allow the load
of sending and consuming messages to be spread over many servers. This allows your system to be able scale hori-
zontally by adding new servers to the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having fairly basic clusters
with the cluster members being hardly aware of each other.

JBoss Messaging provides very configurable state of the art clustering where messages can be intelligently load
balanced between the servers in the cluster, according to the number of consumers on each node, and whether they
are ready for messages.

JBoss Messaging also has the ability to automatically redistribute messages between nodes of a cluster to prevent
starvation on any particular node.

For full details on clustering, please see Chapter 36.

2.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically over unreliable
connections like a wide area network (WAN).

A bridge normally consumes from a queue on one server and forwards messages to another queue on a different
server. Bridges cope with unreliable connections, automatically reconnecting when the connections becomes avail-
able again.

JBoss Messaging bridges can be configured with filter expressions to only forward certain messages, and trans-
formation can also be hooked in.

JBoss Messaging also allows routing between queues to be configured in server side configuration. This allows
complex routing networks to be set up forwarding or copying messages from one destination to another, forming a
global network of interconnected brokers.

For more information please see Chapter 34 and Chapter 33.

Messaging Concepts

6

3
Architecture

In this section we will give an overview of the JBoss Messaging high level architecture.

3.1. Core Architecture

JBoss Messaging core is designed simply as set of Plain Old Java Objects (POJOs).

We've also designed it to have as few dependencies on external jars as possible. In fact, JBoss Messaging core has
zero dependencies on any jars other than the standard JDK classes!

This allows JBoss Messaging to be easily embedded in your own project, or instantiated in any dependency injec-
tion framework such as JBoss Microcontainer, Spring or Google Guice.

A JBoss Messaging server has its own high performance persistent journal, which it uses for message and other
persistence.

Using a high performance journal allows outrageous persistence message performance, something not achievable
when using a relational database for persistence.

JBoss Messaging clients, potentially on different physical machines interact with the JBoss Messaging server.
JBoss Messaging currently provides two APIs for messaging at the client side:

1. Core client API. This is a simple intuitive Java API that allows the full set of messaging functionality without
some of the complexities of JMS.

2. JMS client API. The standard JMS API is available at the client side.

JMS semantics are implemented by a thin JMS facade layer on the client side.

The JBoss Messaging server does not speak JMS and in fact does not know anything about JMS, it's a protocol ag-
nostic messaging server designed to be used with multiple different protocols.

When a user uses the JMS API on the client side, all JMS interactions are translated into operations on the JBoss
Messaging core client API before being transferred over the wire using the JBoss Messaging wire format.

The server always just deals with core API interactions.

A schematic illustrating this relationship is shown in figure 3.1 below:

7

Figure 3.1 shows two user applications interacting with a JBoss Messaging server. User Application 1 is using the
JMS API, while User Application 2 is using the core client API directly.

You can see from the diagram that the JMS API is implemented by a thin facade layer on the client side.

Architecture

8

3.2. JBoss Messaging embedded in your own application

JBoss Messaging core is designed as a set of simple POJOs so if you have an application that requires messaging
functionality internally but you don't want to expose that as a messaging server you can directly instantiate and em-
bed messaging servers in your own application.

For more information on embedding JBoss Messaging, see Chapter 41.

3.3. JBoss Messaging integrated with a JEE application server

JBoss Messaging provides its own fully functional Java Connector Architecture (JCA) adaptor which enables it to
be integrated easily into any JEE compliant application server or servlet engine.

JEE application servers provide Message Driven Beans (MDBs), which are a special type of Enterprise Java Beans
(EJBs) that can process messages from sources such as JMS systems or mail systems.

Probably the most common use of an MDB is to consume messages from a JMS messaging system.

According to the JEE specification, a JEE application server uses a JCA adapter to integrate with a JMS messaging
system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the JEE application server for consuming messages via MDBs, it is
also used when sending message to the JMS messaging system e.g. from inside an EJB or servlet.

When integrating with a JMS messaging system from inside a JEE application server it is always recommended
that this is done via a JCA adaptor.

The application server's JCA service provides extra functionality such as connection pooling and automatic transac-
tion enlistment, which are desirable when using messaging, say, from inside an EJB. It is possible to talk to a JMS
messaging system directly from an EJB, MDB or servlet without going through a JCA adapter, but this is not re-
commended since you will not be able to take advantage of the JCA features, such as caching of JMS sessions,
which can result in poor performance.

Figure 3.2 below shows a JEE application server integrating with a JBoss Messaging server via the JBoss Mes-
saging JCA adaptor. Note that all communication between EJB sessions or entity beans and Message Driven beans
go through the adaptor and not directly to JBoss Messaging.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the JBoss Messaging server.
This is not recommended as you'll most likely end up creating a new connection and session every time you want
to interact from the EJB, which is an anti-pattern.

Architecture

9

For more information on using the JCA adaptor, please see Chapter 31.

3.4. JBoss Messaging stand-alone server

JBoss Messaging can also be deployed as a stand-alone server. This means a fully independent messaging server
not dependent on a JEE application server.

The standard stand-alone messaging server configuration comprises a core messaging server, a JMS service and a
JNDI service.

The role of the JMS Service is to deploy any JMS Queues, Topics and ConnectionFactory instances from any serv-
er side jbm-jms.xml configuration files. It also provides a simple management API for creating and destroying
Queues, Topics and ConnectionFactory instances which can be accessed via JMX or the connection. It is a separate

Architecture

10

service to the JBoss Messaging core server, since the core server is JMS agnostic. If you don't want to deploy any
JMS Queues, Topics and ConnectionFactory instances via server side XML configuration and don't require a JMS
management API on the server side then you can disable this service.

We also include a JNDI server since JNDI is a common requirement when using JMS to lookup Queues, Topics
and ConnectionFactory instances. If you do not require JNDI then this service can also be disabled. JBoss Mes-
saging allows you to programmatically create JMS and core objects directly on the client side as opposed to look-
ing them up from JNDI, so a JNDI server is not always a requirement.

The stand-alone server configuration uses JBoss Microcontainer to instantiate and enforce dependencies between
the components. JBoss Microcontainer is a very lightweight POJO bootstrapper.

The stand-alone server architecture is shown in figure 3.3 below:

For more information on server configuration files see Section 45.1. $

Architecture

11

4
Using the Server

This chapter will familiarise you with how to use the JBoss Messaging server.

We'll show where it is, how to start and stop it, and we'll describe the directory layout and what all the files are and
what they do.

For the remainder of this chapter when we talk about the JBoss Messaging server we mean the JBoss Messaging
standalone server, in its default configuration with a JMS Service and JNDI service enabled.

When running embedded in JBoss Application Server the layout may be slightly different but by-and-large will be
the same.

4.1. Starting and Stopping the standalone server

In the distribution you will find a directory called bin.

cd into that directory and you'll find a unix/linux script called run.sh and a windows batch file called run.bat

To run on Unix/Linux type ./run.sh

To run on Windows type run.bat

These scripts are very simple and basically just set-up the classpath and some JVM parameters and start the JBoss
Microcontainer. The Microcontainer is a light weight container used to deploy the JBoss Messaging POJO's

To stop the server you'll also find a unix/linux script stop.sh and a windows batch file run.bat

To run on Unix/Linux type ./stop.sh

To run on Windows type stop.bat

Please note that JBoss Messaging requires a Java 5 or later JDK to run. We recommend running on Java 6.

Both the run and the stop scripts use the config under config/stand-alone/non-clustered by default. The con-
figuration can be changed by running ./run.sh ../config/stand-alone/clustered or another config of your
choosing. This is the same for the stop script and the windows bat files.

4.2. Server JVM settings

The run scripts run.sh and run.bat set some JVM settings for tuning running on Java 6 and choosing the garbage
collection policy. We recommend using a parallel garbage collection algorithm to smooth out latency and minim-

12

ises large GC pauses.

By default JBoss Messaging runs in a maximum of 1GB of RAM. To increase the memory settings change the -

Xms and -Xmx memory settings as you would for any Java program.

If you wish to add any more JVM arguments or tune the existing ones, the run scripts are the place to do it.

4.3. Server classpath

JBoss Messaging looks for its configuration files on the Java classpath.

The scripts run.sh and run.bat specify the classpath when calling Java to run the server.

In the distribution, the run scripts will add the non clustered configuration directory to the classpath. This is a dir-
ectory which contains a set of configuration files for running the JBoss Messaging server in a basic non-clustered
configuration. In the distribution this directory is config/stand-alone/non-clustered/ from the root of the distri-
bution.

The distribution contains several standard configuration sets for running:

• Non clustered stand-alone.

• Clustered stand-alone

• Non clustered in JBoss Application Server

• Clustered in JBoss Application Server

You can of course create your own configuration and specify any configuration directory when running the run
script.

Just make sure the directory is on the classpath and JBoss Messaging will search there when starting up.

4.4. Library Path

If you're using the Asynchronous IO Journal on Linux, you need to specify java.library.path as a property on
your Java options. This is done automatically in the run.sh script.

If you don't specify java.library.path at your Java options then the JVM will use the environment variable
LD_LIBRARY_PATH.

4.5. System properties

JBoss Messaging also takes a couple of Java system properties on the command line for configuring logging prop-
erties

JBoss Messaging uses JDK logging to minimise dependencies on other logging systems. JDK logging can then be
configured to delegate to some other framework, e.g. log4j if that's what you prefer.

Using the Server

13

For more information on configuring logging, please see Chapter 40.

4.6. Configuration files

The configuration directory is specified on the classpath in the run scripts run.sh and run.bat This directory can
contain the following files.

• jbm-jboss-beans.xml. This is the JBoss Microcontainer beans file which defines what beans the Microcon-
tainer should create and what dependencies to enforce between them. Remember that JBoss Messaging is just a
set of POJOs. In the stand-alone server, it's the JBoss Microcontainer which instantiates these POJOs and en-
forces dependencies between them and other beans. Please see Section 4.8 for more information on this file.

• jbm-configuration.xml. This is the main JBoss Messaging configuration file. All the parameters in this file
are described in Chapter 45.

• jbm-queues.xml. This file contains predefined queues, queue settings and security settings. The file is optional
- all this configuration can also live in jbm-configuration.xml. In fact, the default configuration sets do not
have a jbm.queues.xml file. The purpose of allowing queues to be configured in these files is to allow you to
manage your queue configuration over many files instead of being forced to maintain it in a single file. There
can be many jbm-queues.xml files on the classpath. All will be loaded if found.

• jbm-users.xml JBoss Messaging ships with a security manager implementation which obtains user credentials
from the jbm-users.xml file. This file contains user, password and role information. For more information on
security ,please see Chapter 30.

• jbm-jms.xml The distro configuration by default includes a server side JMS service which mainly deploys JMS
Queues, Topics and ConnectionFactorys from this file into JNDI. If you're not using JMS, or you don't need to
deploy JMS objects on the server side, then you don't need this file. For more information on using JMS, please
see Chapter 5.

• logging.properties This is used to configure the logging handlers used by the Java logger. For more informa-
tion on configuring logging, please see Chapter 40.

• log4j.xml This is the Log4j configuration if the Log4j handler is configured.

Note

The property file-deployment-enabled in the jbm-configuration.xml configuration when set to false
mans that the other configuration files are not loaded. This is true by default.

It is also possible to use system property substitution in all the configuration files. by replacing a value with the
name of a system property. Here is an example of this with a connector configuration:

<connector name="netty">
<factory-class>org.jboss.messaging.integration.transports.netty.NettyConnectorFactory</factory-class>
<param key="jbm.remoting.netty.host" value="${jbm.remoting.netty.host:localhost}" type="String"/>
<param key="jbm.remoting.netty.port" value="${jbm.remoting.netty.port:5445}" type="Integer"/>

</connector>

here you can see we have replaced 2 values with system properties jbm.remoting.netty.host and

Using the Server

14

jbm.remoting.netty.port. These values will be replaced by the value found in the system property if there is one,
if not they default back to localhost or 5445 respectively. It is also possible to not supply a default. i.e.
${jbm.remoting.netty.host}, however the system property must be supplied in that case.

4.7. JBoss Microcontainer Beans File

The stand-alone server is basically a set of POJOs which are instantiated by the light weight JBoss Microcontainer
[http://www.jboss.org/jbossmc/]engine.

Note

A beans file is also needed when the server is deployed in the JBoss Application Server but this will deploy
a slightly different set of objects since the Application Server will already have things like security etc de-
ployed.

Let's take a look at an example beans file from the stand-alone server:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<bean name="Naming" class="org.jnp.server.NamingBeanImpl"/>

<!-- JNDI server. Disable this if you don't want JNDI -->
<bean name="JNDIServer" class="org.jnp.server.Main">

<property name="namingInfo">
<inject bean="Naming"/>

</property>
<property name="port">1099</property>
<property name="bindAddress">localhost</property>
<property name="rmiPort">1098</property>
<property name="rmiBindAddress">localhost</property>

</bean>

<!-- MBean server -->
<bean name="MBeanServer" class="javax.management.MBeanServer">

<constructor factoryClass="java.lang.management.ManagementFactory"
factoryMethod="getPlatformMBeanServer"/>

</bean>

<!-- The core configuration -->
<bean name="Configuration" class="org.jboss.messaging.core.config.impl.FileConfiguration">
</bean>

<!-- The security manager -->
<bean name="JBMSecurityManager"

class="org.jboss.messaging.core.security.impl.JBMSecurityManagerImpl">
<start ignored="true"/>
<stop ignored="true"/>

</bean>

<!-- The core server -->
<bean name="MessagingServer" class="org.jboss.messaging.core.server.impl.MessagingServerImpl">

<start ignored="true"/>
<stop ignored="true"/>
<constructor>

<parameter>
<inject bean="Configuration"/>

</parameter>

Using the Server

15

http://www.jboss.org/jbossmc/

<parameter>
<inject bean="MBeanServer"/>

</parameter>
<parameter>

<inject bean="JBMSecurityManager"/>
</parameter>

</constructor>
</bean>

<!-- The JMS server -->
<bean name="JMSServerManager"

class="org.jboss.messaging.jms.server.impl.JMSServerManagerImpl">
<constructor>

<parameter>
<inject bean="MessagingServer"/>

</parameter>
</constructor>

</bean>

</deployment>

We can see that, as well as the core JBoss Messaging server, the stand-alone server instantiates various different
POJOs, lets look at them in turn:

• JNDIServer

Many clients like to look up JMS Objects from JNDI so we provide a JNDI server for them to do that. If you
don't need JNDI this can be commented out or removed.

• MBeanServer

In order to provide a JMX management interface a JMS MBean server is necessary in which to register the
management objects. Normally this is just the default platform MBean server available in the JVM instance. If
you don't want to provide a JMX management interface this can be commented out or removed.

• Configuration

The messaging server is configured with a Configuration object. In the default stand-alone set-up it uses a File-
Configuration object which knows to read configuration information from the file system. In different configur-
ations such as embedded you might want to provide configuration information from somewhere else.

• Security Manager. The security manager used by the messaging server is pluggable. The default one used just
reads user-role information from the jbm-users.xml file on disk. However it can be replaced by a JAAS secur-
ity manager, or when running inside JBoss Application Server it can be configured to use the JBoss AS security
manager for tight integration with JBoss AS security. If you've disabled security altogether you can remove this
too.

• MessagingServer

This is the core server. It's where 99% of the magic happens

• JMSServerManager

This deploys any JMS Objects such as JMS Queues, Topics and ConnectionFactory instances from jbm-

jms.xml files on the disk. It also provides a simple management API for manipulating JMS Objects. On the

Using the Server

16

whole it just translates and delegates its work to the core server. If you don't need to deploy JMS Queues, Top-
ics and ConnectionFactorys from server side configuration and don't require the JMS management interface this
can be disabled.

4.8. The main configuration file.

The configuration for the JBoss Messaging core server is contained in jbm-configuration.xml. This is what the
FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure JBoss Messaging. In most cases the defaults will do fine, in fact
every attribute can be defaulted which means a file with a single empty configuration element is a valid configur-
ation file. The different configuration will be explained throughout the manual or you can refer to the configuration
reference here.

Using the Server

17

5
Using JMS

Although JBoss Messaging provides a JMS agnostic messaging API, many users will be more comfortable using
JMS.

JMS is a very popular API standard for messaging, and most messaging systems provide a JMS API. If you are
completely new to JMS we suggest you following the Sun JMS tutorial
[http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html] - a full JMS tutorial is out of scope
for this guide.

JBoss Messaging also ships with a wide range of examples, many of which demonstrate JMS API usage. A good
place to start would be to play around with the simple JMS Queue and Topic example, but we also provide ex-
amples for many other parts of the JMS API. A full description of the examples is available in Chapter 9.

In this section we'll go through the main steps in configuring the server for JMS and creating a simple JMS pro-
gram. We'll also show how to configure and use JNDI, and also how to use JMS with JBoss Messaging without us-
ing any JNDI.

5.1. A simple ordering system

For this chapter we're going to use a very simple ordering system as our example. It's a somewhat contrived ex-
ample because of its extreme simplicity, but it serves to demonstrate the very basics of setting up and using JMS.

We will have a single JMS Queue called OrderQueue, and we will have a single MessageProducer sending an order
message to the queue and a single MessageConsumer consuming the order message from the queue.

The queue will be a durable queue, i.e. it will survive a server restart or crash. We also want to predeploy the
queue, i.e. specify the queue in the server JMS configuration so it's created automatically without us having to ex-
plicitly create it from the client.

5.2. JMS Server Configuration

The file jbm-jms.xml on the server classpath contains any JMS Queue, Topic and ConnectionFactory instances that
we wish to create and make available to lookup via the JNDI.

A JMS ConnectionFactory object is used by the client to make connections to the server. It knows the location of
the server it is connecting to, as well as many other configuration parameters. In most cases the defaults will be ac-
ceptable.

We'll deploy a single JMS Queue and a single JMS Connection Factory instance on the server for this example but
there are no limits to the number of Queues, Topics and Connection Factory instances you can deploy from the file.

18

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

Here's our configuration:

<configuration xmlns="urn:jboss:messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:messaging ../schemas/jbm-jms.xsd ">

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>

</connection-factory>

<queue name="OrderQueue">
<entry name="queues/OrderQueue"/>

</queue>

</configuration>

We deploy one ConnectionFactory called ConnectionFactory and bind it in just one place in JNDI as given by the
entry element. ConnectionFactory instances can be bound in many places in JNDI if you require.

Note

The JMS connection factory references a connector called netty. This is a reference to a connector object
deployed in the main core configuration file jbm-configuration.xml which defines the transport and para-
meters used to actually connect to the server.

5.3. JNDI configuration

When using JNDI from the client side you need to specify a set of JNDI properties which tell the JNDI client where
to locate the JNDI server, amongst other things. These are often specified in a file called jndi.properties on the
client classpath, or you can specify them directly when creating the JNDI initial context. A full JNDI tutorial is out-
side the scope of this document, please see the Sun JNDI tutorial
[http://java.sun.com/products/jndi/tutorial/TOC.html] for more information on how to use JNDI.

For talking to the JBoss JNDI Server, the jndi properties will look something like this:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://myhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Where myhost is the hostname or IP address of the JNDI server. 1099 is the port used by the JNDI server and may
vary depending on how you have configured your JNDI server.

In the default standalone configuration, JNDI server ports are configured in the jbm-jboss-beans.xml file where
the JNDIServer bean is confgured, here's a snippet from the file:

<bean name="JNDIServer" class="org.jnp.server.Main">
<property name="namingInfo">

Using JMS

19

http://java.sun.com/products/jndi/tutorial/TOC.html

<inject bean="Naming"/>
</property>
<property name="port">1099</property>
<property name="bindAddress">localhost</property>
<property name="rmiPort">1098</property>
<property name="rmiBindAddress">localhost</property>

</bean>

Note

If you want your JNDI server to be available to non local clients make sure you change it's bind address to
something other than localhost!

5.4. The code

Here's the code for the example:

First we'll create a JNDI initial context from which to lookup our JMS objects:

InitialContect ic = new InitialContext();

Now we'll look up the connection factory:

ConnectionFactory cf = (ConnectionFactory)ic.lookup("/ConnectionFactory");

And look up the Queue:

Queue orderQueue = (Queue)ic.lookup("/queues/OrderQueue");

Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsumer consumer = session.createConsumer(orderQueue);

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Using JMS

20

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

It's as simple as that. For a wide range of working JMS examples please see the examples directory in the distribu-
tion.

5.5. Directly instantiating JMS Resources without using JNDI

Although it's a very common JMS usage pattern to lookup JMS Administered Objects (that's JMS Queues, Topics
and Connection Factories) from JNDI, in some cases a JNDI server is not available and you still want to use JMS,
or you just think "Why do I need JNDI? Why can't I just instantiate these objects directly?"

With JBoss Messaging you can do exactly that. JBoss Messaging supports the direct instantiation of JMS Queue,
Topic and Connection Factory instances, so you don't have to use JNDI at all.

For a full working example of direct instantiation please see the JMS examples in Chapter 9.

Here's our simple example, rewritten to not use JNDI at all:

We create the JMS ConnectionFactory object directly, note we need to provide connection parameters and specify
which transport we are using, for more information on connectors please see Chapter 14.

TransportConfiguration transportConfiguration =
new TransportConfiguration(NettyConnectorFactory.class.getName());

ConnectionFactory cf = new JBossConnectionFactory();

We create the JMS Queue Object directly:

Queue orderQueue = new JBossQueue("OrderQueue");

Next we create a JMS connection using the connection factory:

Connection connection = cf.createConnection();

And we create a non transacted JMS Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

We create a MessageProducer that will send orders to the queue:

MessageProducer producer = session.createProducer(orderQueue);

And we create a MessageConsumer which will consume orders from the queue:

Using JMS

21

MessageConsumer consumer = session.createConsumer(orderQueue);

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

TextMessage message = session.createTextMessage("This is an order");
producer.send(message);

And we consume the message:

TextMessage receivedMessage = (TextMessage)consumer.receive();
System.out.println("Got order: " + receivedMessage.getText());

5.6. Setting The Client ID

This represents the client id for a JMS client and is needed for creating durable subscriptions. It is possible to con-
figure this on the connection factory and can be set via the client-id element. Any connection created by this con-
nection factory will have this set as its client id.

5.7. Setting The Batch Size for DUPS_OK

When the JMS acknowledge mode is set to DUPS_OK it is possible to configure the consumer so that it sends the ac-
knowledgements in batches rather that one at a time, saving valuable bandwidth. This can be configured via the
connection factory via the dups-ok-batch-size element and is set in bytes. The default is 1024 * 1024.

5.8. Setting The Transaction Batch Size

When receiving messages in a transaction it is possible to configure the consumer to send acknowledgements in
batches rather than individually saving valuable bandwidth. This can be configured on the connection factory via
the transaction-batch-size element and is set in bytes. The default is 1024 * 1024.

Using JMS

22

6
Using Core

JBoss Messaging core is a completely JMS-agnostic messaging system with its own core API.

If you don't want to use JMS you can use the core API directly. The core API provides all the functionality of JMS
but without much of the complexity. It also provides features that are not normally available using JMS.

6.1. Core Messaging Concepts

Some of the core messaging concepts are similar to JMS concepts, but core messaging concepts differ in some
ways. In general the core messaging API is simpler than the JMS API, since we remove distinctions between
queues, topics and subscriptions. We'll discuss each of the major core messaging concepts in turn, but to see the
API in detail, please consult the Javadoc.

6.1.1. Message

A message is the unit of data which is sent between clients and servers.

A message has a body which is effectively a byte[], it also has a set of properties which are key-value pairs. Each
property key is a string and property values can be of type integer, long, short, byte, byte[], String, double, float or
boolean.

A message has a destination which represents the address it is being sent to. When the message arrives on the serv-
er it is routed to any queues that are bound to the address. An address may have many queues bound to it or even
none.

Messages can be either durable or non durable. Durable messages in a durable queue will survive a server crash or
restart. Non durable messages will never survive a server crash or restart.

Messages can be specified with a priority value between 0 and 9. 0 represents the highest priority and 9 represents
the lowest. JBoss Messaging will attempt to deliver higher priority messages before lower priority ones.

Messages can be specified with an optional expiry time. JBoss Messaging will not deliver messages after its expiry
time has been exceeded.

Messages also have an optional timestamp which represents the time the message was sent.

6.1.2. Address

A server maintains a mapping between an address and a set of queues. Zero or more queues can be bound to a
single address. Each queue can be bound with an optional message filter. When a message is routed to an address it

23

is routed to the set of queues bound to the message's destination address. If any of the queues are bound with a fil-
ter expression, then the message will only be routed to the subset of bound queues which match that filter expres-
sion.

Note

In core, there is no concept of a Topic, Topic is a JMS only term. Instead, in core, we just deal with ad-
dresses and queues.

For example, a JMS topic would implemented by a single address to which many queues are bound. Each
queue represents a subscription of the topic. A JMS Queue would be implemented as a single address to
which one queue is bound - that queue represents the JMS queue.

6.1.3. Queue

Queues can be durable, meaning the messages they contain survive a server crash or restart, as long as the mes-
sages in them are durable. Non durable queues do not survive a server restart or crash even if the messages they
contain are durable.

Queues can also be temporary, meaning they are automatically deleted when the client connection is closed, if they
are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then the server will only
route messages that match that filter expression to any queues bound to the address.

Many queues can be bound to a single address. A particular queue is only bound to a maximum of one address.

6.1.4. ClientSessionFactory

Clients use ClientSessionFactory instances to create ClientSession instances. ClientSessionFactory instances
know how to connect to the server to create sessions, and are configurable with many settings.

6.1.5. ClientSession

A client uses a ClientSession for consuming and producing messages and for grouping them in transactions. Client-
Session instances can support both transactional and non transactional semantics and also provide an XAResource

interface so messaging operations can be performed as part of a JTA
[http://java.sun.com/javaee/technologies/jta/index.jsp] transaction.

ClientSession instances group ClientConsumers and ClientProducers.

6.1.6. ClientConsumer

Clients use ClientConsumer instances to consume messages from a queue. Core Messaging supports both syn-
chronous and asynchronous message consumption semantics. ClientConsumer instances can be configured with an
optional filter expression and will only consume messages which match that expression.

Using Core

24

http://java.sun.com/javaee/technologies/jta/index.jsp

6.1.7. ClientProducer

Clients create ClientProducer instances on ClientSession instances so they can send messages. ClientProducer
instances can specify an address to which all sent messages are routed, or they can have no specified address, and
the address is specified at send time for the message.

6.2. A simple example of using Core

Here's a very simple program using the core messaging API to send and receive a message:

ClientSessionFactory nettyFactory = new ClientSessionFactoryImpl(
new TransportConfiguration(

InVMConnectorFactory.class.getName()));

ClientSession session = nettyFactory.createSession();

session.createQueue("example", "example", true);

ClientProducer producer = session.createProducer("example");

ClientMessage message = session.createClientMessage(true);

message.getBody().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer consumer = session.createConsumer("example");

ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBody().readString());

session.close();

Using Core

25

7
Mapping JMS Concepts to the Core API

This chapter describes how JMS destinations are mapped to JBoss Messaging core queues.

JBoss Messaging core is JMS-agnostic. It does not have any concept of a JMS topic. A JMS topic is implemented
in core as an address (the topic name) with zero or more queues bound to it. Each queue bound to that address rep-
resents a topic subscription. Likewise, a JMS queue is implemented as an address (the JMS queue name) with one
single queue bound to it which represents the JMS queue.

By convention, all JMS queues map to core queues where the core queue name has the string jms.queue. prepen-
ded to it. E.g. the JMS queue with the name "orders.europe" would map to the core queue with the name
"jms.queue.orders.europe". The address at which the core queue is bound is also given by the core queue name.

For JMS topics the address at which the queues that represent the subscriptions are bound is given by prepending
the string "jms.topic." to the name of the JMS topic. E.g. the JMS topic with name "news.europe" would map to the
core address "jms.topic.news.europe"

In other words if you send a JMS message to a JMS queue with name "orders.europe" it will get routed on the serv-
er to any core queues bound to the address "jms.queue.orders.europe". If you send a JMS message to a JMS topic
with name "news.europe" it will get routed on the server to any core queues bound to the address
"jms.topic.news.europe".

If you want to configure settings for a JMS Queue with the name "orders.europe", you need to configure the corres-
ponding core queue "jms.queue.orders.europe":

<!-- expired messages in JMS Queue "orders.europe"
will be sent to the JMS Queue "expiry.europe" -->

<address-setting match="jms.queue.orders.europe">
<expiry-address>jms.queue.expiry.europe</expiry-address>
...

</address-setting>

26

8
The Client Classpath

In this chapter we explain which jars you need on the Java classpath of a JBoss Messaging client application. This
depends on various factors including whether you're using just core, JMS, JNDI or Netty. We explain which jars
are needed in each case.

Note

All the jars mentioned here can be found in the lib directory of the JBoss Messaging distribution. Be sure
you only use the jars from the correct version of the release, you must not mix and match versions of jars
from different JBoss Messaging versions.

8.1. Pure Core Client

If you're using just a pure JBoss Messaging core client (i.e. no JMS) then you need jbm-core-client.jar on your
client classpath.

If you're using a Netty transport then you will also netty netty.jar and jbm-transports.jar.

8.2. JMS Client

If you're using JMS on the client side, then you will need jbm-core-client.jar, jbm-jms-client.jar and jbm-

jms-api.jar. Note that jbm-jms-api.jar just contains Java EE API interface classes needed for the javax.jms.*

classes, so if you already have a jar with these interface classes on your classpath you won't need it.

If you're using a Netty transport then you will also netty netty.jar and jbm-transports.jar.

8.3. JNDI

If you're looking up JNDI objects from the JNDI server co-located with the JBoss Messaging standalone server
you'll also need the jar jnp-client.jar jar on your client classpath as well as any other jars mentioned previously.

27

9
Examples

The JBoss Messaging distribution comes with a wide variety of run out-of-the-box examples demonstrating many
of the features.

The examples are available in the distribution, in the examples directory. Examples are split into JMS and core ex-
amples. JMS examples show how a particular feature can be used by a normal JMS client. Core examples show
how the equivalent feature can be used by a core messaging client.

A set of Java EE examples are also provided which need the JBoss Application Server installed to be able to run.

9.1. JMS Examples

To run a JMS example, simply cd into the appropriate example directory and type ant.

You will need to have Apache 1.7.0 or later ant installed on your system with the ant bin directory on your path.

Here's a listing of the examples with a brief description.

9.1.1. Application-Layer Failover

JBoss Messaging implements fully transparent automatic failover of connections from a live to backup node, this
requires no special coding for failover, and is described in a different example. Automatic failover requires server
replication.

However, JBoss Messaging also supports Application-Layer failover, useful in the case that replication is not en-
abled on the server side.

With Application-Layer failover, it's up to the application to register a JMS ExceptionListener with JBoss Mes-
saging which will be called by JBoss Messaging in the event that connection failure is detected.

The code in the ExceptionListener then recreates the JMS connection, session, etc on another node and the ap-
plication can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer failover differs
from automatic failover in that some client side coding is required in order to implement this. Also, with Applica-
tion-layer failover, since the old session object dies and a new one is created, any uncommitted work in the old ses-
sion will be lost, and any unacknowledged messages might be redelivered.

9.1.2. Automatic (Transparent) Failover

28

The automatic-failover example demonstrates two servers coupled as a live-backup pair for high availability
(HA), and a client connection transparently failing over from live to backup when the live server is crashed.

JBoss Messaging implements seamless, transparent failover of client connections between live and backup servers.
This is implemented by the replication of state between live and backup nodes. When replication is configured and
a live node crashes, the client connections can carry on as if nothing happened and carry on sending and consuming
messages.

9.1.3. Automatic Reconnect

The reconnect-same-node example demonstrates how JBoss Messaging connections can be configured to be resi-
lient to temporary network failures.

In the case of a network failure being detected, either as a result of a failure to read/write to the connection, or the
failure of a pong to arrive back from the server in good time after a ping is sent, instead of failing the connection
immediately and notifying any user ExceptionListener objects, JBoss Messaging can be configured to automatic-
ally retry the connection, and reconnect to the server when it becomes available again across the network.

9.1.4. Browser

The browser example shows you how to use a JMS QueueBrowser with JBoss Messaging.

Queues are a standard part of JMS, please consult the JMS 1.1 specification for full details.

A QueueBrowser is used to look at messages on the queue without removing them. It can scan the entire content of
a queue or only messages matching a message selector.

9.1.5. Core Bridge Example

The bridge example demonstrates a core bridge deployed on one server, which consumes messages from a local
queue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two JBoss Messaging servers which are remotely sep-
arated. Core bridges are resilient and will cope with temporary connection failure allowing them to be an ideal
choice for forwarding over unreliable connections, e.g. a WAN.

9.1.6. Client Kickoff

The client-kickoff example shows how to terminate client connections given an IP address using the JMX man-
agement API.

9.1.7. Client Side Load-Balancing

The client-side-load-balancing example demonstrates how subsequent connections created from a JMS Con-

nectionFactory can be created to different nodes of the cluster. In other words it demonstrates how JBoss Mes-
saging does client side load balancing of connections across the cluster.

Examples

29

9.1.8. Clustered Queue

The clustered-queue example demonstrates a JMS queue deployed on two different nodes. The two nodes are
configured to form a cluster. We then create a consumer for the queue on each node, and we create a producer on
only one of the nodes. We then send some messages via the producer, and we verify that both consumers receive
the sent messages in a round-robin fashio.

9.1.9. Clustered Standalone

The clustered-standalone example demonstrates how to configure and starts 3 cluster nodes on the same ma-
chine to form a cluster. A subscriber for a JMS topic is created on each node, and we create a producer on only one
of the nodes. We then send some messages via the producer, and we verify that the 3 subscribers receive all the
sent messages.

9.1.10. Clustered Topic

The clustered-topic example demonstrates a JMS topic deployed on two different nodes. The two nodes are con-
figured to form a cluster. We then create a subscriber on the topic on each node, and we create a producer on only
one of the nodes. We then send some messages via the producer, and we verify that both subscribers receive all the
sent messages.

9.1.11. Dead Letter

The dead-letter example shows you how to define and deal with dead letter messages. Messages can be delivered
unsuccessfully (e.g. if the transacted session used to consume them is rolled back).

Such a message goes back to the JMS destination ready to be redelivered. However, this means it is possible for a
message to be delivered again and again without any success and remain in the destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful delivery attempts,
the message is removed from the destination and put instead in a dead letter destination where they can be con-
sumed for further investigation.

9.1.12. Delayed Redelivery

The delayed-redelivery example demonstrates how JBoss Messaging can be configured to provide a delayed re-
delivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a delayed rede-
livery, the system can get into a "thrashing" state, with delivery being attempted, the client rolling back, and deliv-
ery being re-attempted in quick succession, using up valuable CPU and network resources.

9.1.13. Divert

JBoss Messaging diverts allow messages to be transparently "diverted" from one address to another with just some
simple configuration defined on the server side.

Examples

30

9.1.14. Durable Subscription

The durable-subscription example shows you how to use a durable subscription with JBoss Messaging. Durable
subscriptions are a standard part of JMS, please consult the JMS 1.1 specification for full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages contained in them
persist longer than the lifetime of the subscriber - i.e. they will accumulate messages sent to the topic even if there
is no active subscriber on them. They will also survive server restarts. Note that for the messages to be persisted,
the messages sent to them must be marked as persistent messages.

9.1.15. Embedded

The embedded example shows how to embed the JBoss Messaging Server within your own code.

9.1.16. HTTP Transport

The http-transport example shows you how to configure JBoss Messaging to use the HTTP protocol as its trans-
port layer.

9.1.17. Instantiate JMS Objects Directly

Usually, JMS Objects such as ConnectionFactory, Queue and Topic instances are looked up from JNDI before be-
ing used by the client code. This objects are called "administered objects" in JMS terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue JBoss Messaging
also supports the direct instantiation of these administered objects on the client side so you don't have to use JNDI
for JMS.

9.1.18. Interceptor

JBoss Messaging allows an application to use an interceptor to hook into the messaging system. Interceptors allow
you to handle various message events in JBoss Messaging.

9.1.19. JAAS

The jaas example shows you how to configure JBoss Messaging to use JAAS for security. JBoss Messaging can
leverage JAAS to delegate user authentication and authorization to existing security infrastructure.

9.1.20. JMX Management

The jmx example shows how to manage JBoss Messaging using JMX.

9.1.21. Large Message

The large-message example shows you how to send and receive very large messages with JBoss Messaging.

Examples

31

JBoss Messaging supports the sending and receiving of huge messages, much larger than can fit in available RAM
on the client or server. Effectively the only limit to message size is the amount of disk space you have on the serv-
er.

Large messages are persisted on the server so they can survive a server restart. In other words JBoss Messaging
doesn't just do a simple socket stream from the sender to the consumer.

9.1.22. Last-Value Queue

The last-value-queue example shows you how to define and deal with last-value queues. Last-Value queues are
special queues which discard any messages when a newer message with the same value for a well-defined last-
value property is put in the queue. In other words, a last-value queue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the latest value for a
particular stock.

9.1.23. Load Balanced Clustered Queue

The clustered-queue example demonstrates a JMS queue deployed on two different nodes. The two nodes are
configured to form a cluster.

We then create a consumer on the queue on each node, and we create a producer on only one of the nodes. We then
send some messages via the producer, and we verify that both consumers receive the sent messages in a round-
robin fashion.

In other words, JBoss Messaging load balances the sent messages across all consumers on the cluster

9.1.24. Management

The management example shows how to manage JBoss Messaging using JMS Messages to invoke management op-
erations on the server.

9.1.25. Management Notification

The management-notification example shows how to receive management notifications from JBoss Messaging
using JMS messages. JBoss Messaging servers emit management notifications when events of interest occur
(consumers are created or closed, destinations are created or deleted, security authentication fails, etc.).

9.1.26. Message Consumer Rate Limiting

With JBoss Messaging you can specify a maximum consume rate at which a JMS MessageConsumer will consume
messages. This can be specified when creating or deploying the connection factory.

If this value is specified then JBoss Messaging will ensure that messages are never consumed at a rate higher than
the specified rate. This is a form of consumer throttling.

9.1.27. Message Counter

Examples

32

The message-counters example shows you how to use message counters to obtain message information for a JMS
queue.

9.1.28. Message Expiration

The expiry example shows you how to define and deal with message expiration. Messages can be retained in the
messaging system for a limited period of time before being removed. JMS specification states that clients should
not receive messages that have been expired (but it does not guarantee this will not happen).

JBoss Messaging can assign an expiry destination to a given queue so that when messages are expired, they are re-
moved from the queue and sent to the expiry destination. These "expired" messages can later be consumed from the
expiry destination for further inspection.

9.1.29. Message Group

The message-group example shows you how to configure and use message groups with JBoss Messaging. Message
groups allow you to pin messages so they are only consumed by a single consumer. Message groups are sets of
messages that has the following characteristics:

• Messages in a message group share the same group id, i.e. they have same JMSXGroupID string property val-
ues

• The consumer that receives the first message of a group will receive all the messages that belongs to the group

9.1.30. Message Producer Rate Limiting

The producer-rte-limit example demonstrates how, with JBoss Messaging, you can specify a maximum send
rate at which a JMS message producer will send messages.

9.1.31. Message Priority

Message Priority carries the delivery preference of messages.

It can be retrieved by the message's standard header field 'JMSPriority' as defined in JMS specification version 1.1.

The value is of type integer, ranging from 0 (the lowest) to 9 (the highest). When messages are being delivered,
their priorities will effect their order of delivery. Messages of higher priorities will likely be delivered before those
of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations. Please consult the
JMS 1.1 specification for full details.

9.1.32. Message Redistribution

The queue-message-redistribution example demonstrates message redistribution between queues with the same
name deployed in different nodes of a cluster.

Examples

33

9.1.33. No Consumer Buffering

By default, JBoss Messaging consumers buffer messages from the server in a client side buffer before you actually
receive them on the client side. This improves performance since otherwise every time you called receive() or had
processed the last message in a MessageListener onMessage() method, the JBoss Messaging client would have to
go the server to request the next message, which would then get sent to the client side, if one was available.

This would involve a network round trip for every message and really reduce performance. Therefore, by default,
JBoss Messaging pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and JBoss Messaging allows it to be switched off. This example demon-
strates that.

9.1.34. Paging

The paging example shows how JBoss Messaging can support huge queues even when the server is running in lim-
ited RAM. It does this by transparently paging messages to disk, and depaging them when they are required.

9.1.35. Pre-Acknowledge

Standard JMS supports three acknowledgement modes: AUTO_ACKNOWLEDGE, CLIENT_ACKNOWLEDGE, and
DUPS_OK_ACKNOWLEDGE. For a full description on these modes please consult the JMS specification, or any JMS tu-
torial.

All of these standard modes involve sending acknowledgements from the client to the server. However in some
cases, you really don't mind losing messages in event of failure, so it would make sense to acknowledge the mes-
sage on the server before delivering it to the client. This example demonstrates how JBoss Messaging allows this
with an extra acknowledgement mode.

9.1.36. Queue

A simple example demonstrating a JMS queue.

9.1.37. Queue Requestor

A simple example demonstrating a JMS queue requestor.

9.1.38. Queue with Message Selector

The queue-selector example shows you how to selectively consume messages using message selectors with
queue consumers.

9.1.39. Request-Response

A simple example showing the JMS request-response pattern.

Examples

34

9.1.40. Scheduled Message

The scheduled-message example shows you how to send a scheduled message to a JMS Queue with JBoss Mes-
saging. Scheduled messages won't get delivered until a specified time in the future.

9.1.41. Security

The security example shows you how configure and use role based queue security with JBoss Messaging.

9.1.42. Send Acknowledgements

The send-acknowledgements example shows you how to use JBoss Messaging's advanced asynchronous send ac-
knowledgements feature to obtain acknowledgement from the server that sends have been received and processed in
a separate stream to the sent messages.

9.1.43. Static Message Selector

The static-selector example shows you how to configure a JBoss Messaging core queue with static message se-
lectors (filters).

9.1.44. Static Message Selector Using JMS

The static-selector-jms example shows you how to configure a JBoss Messaging queue with static message se-
lectors (filters) using JMS.

9.1.45. SSL Transport

The ssl-enabled shows you how to configure SSL with JBoss Messaging to send and receive message.

9.1.46. Symmetric Cluster

The symmetric-cluster example demonstrates a symmetric cluster set-up with JBoss Messaging.

JBoss Messaging has extremely flexible clustering which allows you to set-up servers in many different topologies.
The most common topology that you'll perhaps be familiar with if you are used to application server clustering is a
symmetric cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as every other node,
and every node is connected to every other node in the cluster.

9.1.47. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.

9.1.48. Topic

Examples

35

A simple example demonstrating a JMS topic.

9.1.49. Topic Hierarchy

JBoss Messaging supports topic hierarchies. With a topic hierarchy you can register a subscriber with a wild-card
and that subscriber will receive any messages sent to an address that matches the wild card.

9.1.50. Topic Selector 1

The topic-selector-example1 example shows you how to send message to a JMS Topic, and subscribe them us-
ing selectors with JBoss Messaging.

9.1.51. Topic Selector 2

The topic-selector-example1 example shows you how to selectively consume messages using message selectors
with topic consumers.

9.1.52. Transactional Session

The transactional example shows you how to use a transactional Session with JBoss Messaging.

9.1.53. XA Heuristic

The xa-heuristic example shows you how to make an XA heuristic decision through JBoss Messaging Manage-
ment Interface. A heuristic decision is a unilateral decision to commit or rollback an XA transaction branch after it
has been prepared.

9.1.54. XA Receive

The xa-receive example shows you how message receiving behaves in an XA transaction in JBoss Messaging.

9.1.55. XA Send

The xa-send example shows you how message sending behaves in an XA transaction in JBoss Messaging.

9.1.56. XA with Transaction Manager

The xa-with-jta example shows you how to use JTA interfaces to control transactions with JBoss Messaging.

9.2. Core API Examples

To run a core example, simply cd into the appropriate example directory and type ant

Examples

36

9.2.1. Embedded

This example shows how to embed the JBoss Messaging server within your own code.

9.3. Java EE Examples

Most of the Java EE examples can be run the following way. simply cd into the appropriate example directory an
type ant deploy. This will create a new JBoss AS profile and start the server. When the server is started from a
different window type ant run to run the example. Some examples require further steps, please refer to the ex-
amples documentation for further instructions.

9.3.1. EJB/JMS Transaction

An example that shows using an EJB and JMS together within a transaction.

9.3.2. HAJNDI (High Availability)

A simple example demonstrating using JNDI within a cluster.

9.3.3. Resource Adapter Configuration

This example demonstrates how to configure several properties on the JBoss Messaging JCA resource adaptor.

9.3.4. JMS Bridge

An example demonstrating the use of the JBoss Messaging JMS bridge.

9.3.5. MDB (Message Driven Bean)

A simple example of a message driven bean.

9.3.6. Servlet Transport

An example of how to use the JBoss Messaging servlet transport.

9.3.7. Servlet SSL Transport

An example of how to use the JBoss Messaging servlet transport over SSL.

9.3.8. XA Recovery

An example of how XA recovery works within the JBoss Application server using JBoss Messaging.

Examples

37

10
Routing Messages With Wild Cards

JBoss Messaging allows the routing of messages via wildcard addresses.

If a consumer is created with an address of say queue.news.# then it will receive any messages sent to addresses
that match this, for instance queue.news.europe or queue.news.usa or queue.news.usa.sport. This allows a con-
sumer to consume messages which are sent to a hierarchy of addresses, rather than the consumer having to specify
a specific address.

Note

In JMS terminology this allows "topic hierarchies" to be created.

To enable this functionality set the property wild-card-routing-enabled in the jbm-configuration.xml file to
true. This is true by default.

For more information on the wild card syntax take a look at Chapter 11 chapter, also see Section 9.1.49.

38

11
Understanding the JBoss Messaging Wildcard Syntax

JBoss Messaging uses a specific syntax for representing wildcards in security settings, address settings and when
creating consumers.

The syntax is similar to that used by AMQP [www.amqp.org].

A JBoss Messaging wildcard expression contains words delimited by the character '.' (full stop).

The special characters '#' and '*' also have special meaning and can take the place of a word.

The character '#' means 'match any sequence of zero or more words'.

The character '*' means 'match a single word'.

So the wildcard 'news.europe.#' would match 'news.europe', 'news.europe.sport', 'news.europe.politics', and
'news.europe.politics.regional' but would not match 'news.usa', 'news.usa.sport' nor 'entertainment'.

The wildcard 'news.*' would match 'news.europe', but not 'news.europe.sport'.

The wildcard 'news.*.sport' would match 'news.europe.sport' and also 'news.usa.sport', but not
'news.europe.politics'.

39

www.amqp.org

12
Filter Expressions

JBoss Messaging provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for JMS selectors, but the predefined identifiers are different. For documentation
on JMS selector syntax please the JMS javadoc for javax.jms.Message
[http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html].

Filter expressions are used in several places in JBossMessaging

• Predefined Queues. When pre-defining a queue, either in jbm-configuration.xml or jbm-jms.xml a filter ex-
pression can be defined for a queue. Only messages that match the filter expression will enter the queue.

• Core bridges can be defined with an optional filter expression, only matching messages will be bridged (see
Chapter 34).

• Diverts can be defined with an optional filter expression, only matching messages will be diverted (see
Chapter 33).

• Filter are also used programmatically when creating consumers, queues and in several places as described in
Chapter 29.

There are some differences between JMS selector expressions and JBoss Messaging core filter expressions. Where-
as JMS selector expressions operate on a JMS message, JBoss Messaging core filter expressions operate on a core
message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core message in an ex-
pression:

• JBMPriority. To refer to the priority of a message. Message priorities are integers with valid values from 0 -

9. 0 is the lowest priority and 9 is the highest. E.g. JBMPriority = 3 AND animal = 'aardvark'

• JBMExpiration. To refer to the expiration time of a message. The value is a long integer.

• JBMDurable. To refer to whether a message is durable or not. The value is a string with valid values: DURABLE or
NON_DURABLE.

• JBMTimestamp. The timestamp of when the message was created. The value is a long integer.

• JBMSize. The size of a message in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the message.

40

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

13
Persistence

In this chapter we will describe how persistence works with JBoss Messaging and how to configure it.

JBoss Messaging ships with a high performance journal. This journal has been implemented by the JBoss Mes-
saging team with a view to providing high performance in a messaging system. Since JBoss Messaging handles its
own persistence, rather than relying on a database or other 3rd party persistence engine, we have been able to tune
the journal to gain optimal performance for the persistence of messages and transactions.

A JBoss Messaging journal is an append only journal. It consists of a set of files on disk. Each file is pre-created to
a fixed size and initially filled with padding. As operations are performed on the server, e.g. add message, update
message, delete message, records are appended to the journal. When one journal file is full we move to the next
one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head movement, i.e. we
minimise random access operations.

Making the file size configurable means that an optimal size can be chosen, i.e. making each file fit on a disk cylin-
der. Modern disk topologies are complex and we are not in control over which cylinder(s) the file is mapped onto
so this is not an exact science. But by minimising the number of disk cylinders the file is using, we can minimise
the amount of disk head movement, since an entire disk cylinder is accessible simply by the disk rotating - the head
does not have to move.

As delete records are added to the journal, JBoss Messaging has a sophisticated file garbage collection algorithm
which can determine if a particular journal file is needed any more - i.e. has all it's data been deleted in the same or
other files. If so, the file can be reclaimed and re-used.

JBoss Messaging also has a compaction algorithm which removes dead space from the journal and compresses up
the data so it takes up less files on disk.

The journal also fully supports transactional operation if required, supporting both local and XA transactions.

The majority of the journal is written in Java, however we abstract out the interaction with the actual file system to
allow different pluggable implementations. We ship JBoss Messaging with two implementations:

• Java NIO [http://en.wikipedia.org/wiki/New_I/O].

The first implementation uses standard Java NIO to interface with the file system. This provides very good per-
formance and runs on any platform where there's a JDK.

• Linux Asynchronous IO

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO library (AIO).
In a highly concurrent environment, AIO can provide better overall persistent throughput since it does not re-

41

http://en.wikipedia.org/wiki/New_I/O

quire each individual transaction boundary to be synced to disk. Most disks can only support a limited number
of syncs per second, so a syncing approach does not scale well when the number of concurrent transactions
needed to be committed grows too large. With AIO, JBoss Messaging will be called back when the data has
made it to disk, allowing us to avoid explicit syncs altogether and simply send back confirmation of completion
when AIO informs us that the data has been persisted.

The AIO journal is only available when running Linux kernel 2.6 or later and after having installed libaio (if it's
not already installed). For instructions on how to install libaio please see Section 13.3.

For more information on libaio please see Chapter 38.

libaio is part of the kernel project.

The standard JBoss Messaging core server uses two instances of the journal:

• Bindings journal.

This journal is used to store bindings related data. That includes the set of queues that are deployed on the serv-
er and their attributes. It also stores data such as id sequence counters.

The bindings journal is always a NIO journal as it is typically low throughput compared to the message journal.

• Message journal.

This journal instance stores all message related data, including the message themselves and also duplicate id
caches.

By default JBoss Messaging will try and use an AIO journal. If AIO is not available, e.g. the platform is not
Linux with the correct kernel version or AIO has not been installed then it will automatically fall back to using
Java NIO which is available on any Java platform.

For large messages, JBoss Messaging persists them outside the message journal. This is discussed in Chapter 22.

JBoss Messaging also pages messages to disk in low memory situations. This is discussed in Chapter 23.

If no persistence is required at all, JBoss Messaging can also be configured not to persist any data at all to storage
as discussed in Section 13.4.

13.1. Configuring the bindings journal

The bindings journal is configured using the following attributes in jbm-configuration.xml

• bindings-directory

This is the directory in which the bindings journal lives. The default value is data/bindings.

• create-bindings-dir

If this is set to true then the bindings directory will be automatically created at the location specified in bind-

Persistence

42

ings-directory if it does not already exist. The default value is true

13.2. Configuring the message journal

The message journal is configured using the following attributes in jbm-configuration.xml

• journal-directory

This is the directory in which the message journal lives. The default value is data/journal.

For the best performance, we recommend the journal is located on its own physical volume in order to minim-
ise disk head movement. If the journal is on a volume which is shared with other processes which might be
writing other files (e.g. bindings journal, database, or transaction coordinator) then the disk head may well be
moving rapidly between these files as it writes them, thus reducing performance.

When the message journal is stored on a SAN we recommend each journal instance that is stored on the SAN is
given its own LUN (logical unit).

• create-journal-dir

If this is set to true then the journal directory will be automatically created at the location specified in journ-

al-directory if it does not already exist. The default value is true

• journal-type

Valid values are NIO or ASYNCIO.

Choosing NIO chooses the Java NIO journal. Choosing AIO chooses the Linux asynchronous IO journal. If you
choose AIO but are not running Linux or you do not have libaio installed then JBoss Messaging will detect this
and automatically fall back to using NIO.

• journal-sync-transactional

If this is set to true then JBoss Messaging will wait for all transaction data to be persisted to disk on a commit
before sending a commit response OK back to the client. The default value is true.

• journal-sync-non-transactional

If this is set to true then JBoss Messaging will wait for any non transactional data to be persisted to disk on a
send before sending the response back to the client. The default value for this is false.

• journal-file-size

The size of each journal file in bytes. The default value for this is 10485760 bytes (10MiB).

• journal-min-files

The minimum number of files the journal will maintain. When JBoss Messaging starts and there is no initial
message data, JBoss Messaging will pre-create journal-min-files number of files.

Persistence

43

Creating journal files and filling them with padding is a fairly expensive operation and we want to minimise do-
ing this at run-time as files get filled. By precreating files, as one is filled the journal can immediately resume
with the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should tune this number of
files to match that total amount of data.

• journal-max-aio

When using an AIO journal, write requests are queued up before being submitted to AIO for execution. Then
when AIO has completed them it calls JBoss Messaging back. This parameter controls the maximum number of
write requests that can be in the AIO queue at any one time. If the queue becomes full then writes will block
until space is freed up. This parameter has no meaning when using the NIO journal.

There is a limit and the total max AIO can't be higher than what is configured at the OS level
(/proc/sys/fs/aio-max-nr) usually at 65536.

The default value for this is 500.

• journal-aio-buffer-timeout

Flush period on the internal AIO timed buffer, configured in nano seconds. For performance reasons we buffer
data before submitting it to the kernel in a single batch. This parameter determines the maximum amount of
time to wait before flushing the buffer, if it does not get full by itself in that time.

The default value for this paramater is 20000 nano seconds (i.e. 20 microseconds).

• journal-aio-flush-on-sync

If this is set to true, the internal buffers are flushed right away when a sync request is performed. Sync requests
are performed on transactions if journal-sync-transactional is true, or on sending regular messages if
journalsync-non-transactional is true.

JBoss Messaging was made to scale up to hundreds of producers. We try to use most of the hardware resources
by scheduling multiple writes and syncs in a single OS call.

However in some use cases it may be better to not wait any data and just flush and write to the OS right away.
For example if you have a single producer writing small transactions. On this case it would be better to always
flush-on-sync.

The default value for this parameter is false.

• journal-aio-buffer-size

The size of the timed buffer on AIO. The default value is 128KiB.

• journal-compact-min-files

The minimal number of files before we can consider compacting the journal. The compacting algorithm won't
start until you have at least journal-compact-min-files

Persistence

44

The default for this parameter is 10

• journal-compact-percentage

The threshold to start compacting. When less than this percentage is considered live data, we start compacting.
Note also that compacting won't kick in until you have at least journal-compact-min-files data files on the
journal

The default for this parameter is 30

13.3. Installing AIO

The Java NIO journal gives great performance, but If you are running JBoss Messaging using Linux Kernel 2.6 or
later, we highly recommend you use the AIO journal for the best persistence performance especially under high
concurrency.

It's not possible to use the AIO journal under other operating systems or earlier versions of the Linux kernel.

If you are running Linux kernel 2.6 or later and don't already have libaio installed, you can easily install it using
the following steps:

Using yum, (e.g. on Fedora or Red Hat Enterprise Linux):

sudo yum install libaio

Using aptitude, (e.g. on Ubuntu or Debian system):

sudo apt-get install libaio

13.4. Configuring JBoss Messaging for Zero Persistence

In some situations, zero persistence is sometimes required for a messaging system. Configuring JBoss Messaging
to perform zero persistence is straightforward. Simply set the parameter persistence-enabled in jbm-

configuration.xml to false.

Please note that if you set this parameter to false, then zero persistence will occur. That means no bindings data,
message data, large message data, duplicate id caches or paging data will be persisted.

Persistence

45

14
Configuring the Transport

JBoss Messaging has a fully pluggable and highly flexible transport layer and defines its own Service Provider In-
terface (SPI) to make plugging in a new transport provider relatively straightforward.

In this chapter we'll describe the concepts required for understanding JBoss Messaging transports and where and
how they're configured.

14.1. Understanding Acceptors

One of the most important concepts in JBoss Messaging transports is the acceptor. Let's dive straight in and take a
look at an acceptor defined in xml in the configuration file jbm-configuration.xml.

<acceptors>
<acceptor name="netty">

<factory-class>
org.jboss.messaging.integration.transports.netty.NettyAcceptorFactory

</factory-class>
<param key="jbm.remoting.netty.port" value="5446" type="Integer"/>

</acceptor>
</acceptors>

Acceptors are always defined inside an acceptors element. There can be one or more acceptors defined in the ac-

ceptors element. There's no upper limit to the number of acceptors per server.

Each acceptor defines a way in which connections can be made to the JBoss Messaging server.

In the above example we're defining an acceptor that uses Netty to listen for connections at port 5446.

The acceptor element contains a sub-element factory-class, this element defines the factory used to create ac-
ceptor instances. In this case we're using Netty to listen for connections so we use the Netty implementation of an
AcceptorFactory to do this. Basically, the factory-class element determines which pluggable transport we're go-
ing to use to do the actual listening.

The acceptor element can also be configured with zero or more param sub-elements. Each param element defines a
key-value pair. These key-value pairs are used to configure the specific transport, the set of valid key-value pairs
depends on the specific transport be used and are passed straight through to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address to bind to, or the
port to listen at.

Keys are always strings and values can be of type Long, Integer, String or Boolean.

46

14.2. Understanding Connectors

Whereas acceptors are used on the server to define how we accept connections, connectors are used by a client to
define how it connects to a server.

Let's look at a connector defined in our jbm-configuration.xml file:

<connectors>
<connector name="netty">

<factory-class>
org.jboss.messaging.integration.transports.netty.NettyConnectorFactory

</factory-class>
<param key="jbm.remoting.netty.port" value="5446" type="Integer"/>

</connector>
</connectors>

Connectors can be defined inside an connectors element. There can be one or more connectors defined in the con-

nectors element. There's no upper limit to the number of connectors per server.

You make ask yourself, if connectors are used by the client to make connections then why are they defined on the
server? There are a couple of reasons for this:

• Sometimes the server acts as a client itself when it connects to another server, for example when one server is
bridged to another, or when a server takes part in a cluster. In this cases the server needs to know how to con-
nect to other servers. That's defined by connectors.

• If you're using JMS and the server side JMS service to instantiate JMS ConnectionFactory instances and bind
them in JNDI, then when creating the JBossConnectionFactory it needs to know what server that connection
factory will create connections to.

That's defined by the connector-ref element in the jbm-jms.xmlfile on the server side. Let's take a look at a
snipped from a jbm-jms.xml file that shows a JMS connection factory that references our netty connector
defined in our jbm-configuration.xml file:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>

<entry name="ConnectionFactory"/>
<entry name="XAConnectionFactory"/>

</entries>
</connection-factory>

14.3. Configuring the transport directly from the client side.

How do we configure a core ClientSessionFactory with the information that it needs to connect with a server?

Connectors are also used indirectly when directly configuring a core ClientSessionFactory to directly talk to a
server. Although in this case there's no need to define such a connector in the server side configuration, instead we

Configuring the Transport

47

just create the parameters and tell the ClientSessionFactory which connector factory to use.

Here's an example of creating a ClientSessionFactory which will connect directly to the acceptor we defined
earlier in this chapter, it uses the standard Netty TCP transport and will try and connect on port 5446 to localhost
(default):

Map<String, Object> connectionParams = new HashMap<String, Object>();

connectionParams.put(org.jboss.messaging.integration.transports.netty.PORT_PROP_NAME,
5446);

TransportConfiguration transportConfiguration =
new TransportConfiguration(
"org.jboss.messaging.integration.transports.netty.NettyConnectorFactory",
connectionParams);

ClientSessionFactory sessionFactory = new ClientSessionFactory(transportConfiguration);

ClientSession session = sessionFactory.createSession(...);

etc

Similarly, if you're using JMS, you can configure the JMS connection factory directly on the client side without
having to define a connector on the server side or define a connection factory in jbm-jms.xml:

Map<String, Object> connectionParams = new HashMap<String, Object>();

connectionParams.put(org.jboss.messaging.integration.transports.netty.PORT_PROP_NAME, 5446);

TransportConfiguration transportConfiguration =
new TransportConfiguration(
"org.jboss.messaging.integration.transports.netty.NettyConnectorFactory",
connectionParams);

ConnectionFactory connectionFactory = new JBossConnectionFactory(transportConfiguration);

Connection jmsConnection = connectionFactory.createConnection();

etc

14.4. Configuring the Netty transport

Out of the box, JBoss Messaging currently uses Netty [http://www.jboss.org/netty/], a high performance low level
network library.

Our Netty transport can be configured in several different ways; to use old (blocking) Java IO, or NIO
(non-blocking), also to use straightforward TCP sockets, SSL, or to tunnel over HTTP or HTTPS, on top of that we
also provide a servlet transport.

We believe this caters for the vast majority of transport requirements.

14.4.1. Configuring Netty TCP

Configuring the Transport

48

http://www.jboss.org/netty/

Netty TCP is a simple unencrypted TCP sockets based transport. Netty TCP can be configured to use old blocking
Java IO or non blocking Java NIO. We recommend you use the default Java NIO for better scalability.

If you're running connections across an untrusted network please bear in mind this transport is unencrypted. You
may want to look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side. I.e. the server does not initiate any
connections to the client. This works well with firewall policies that typically only allow connections to be initiated
in one direction.

All the valid Netty transport keys are defined in the class
org.jboss.messaging.integration.transports.netty.TransportConstants. The parameters can be used either
with acceptors or connectors. The following parameters can be used to configure Netty for simple TCP:

• jbm.remoting.netty.usenio. If this is true then Java non blocking NIO will be used. If set to false than old
blocking Java IO will be used.

We highly recommend that you use non blocking Java NIO. Java NIO does not maintain a thread per connec-
tion so can scale to many more concurrent connections than with old blocking IO. We recommend the usage of
Java 6 for NIO and the best scalability. The default value for this property is true.

• jbm.remoting.netty.host. This specified the host name or ip address to connect to (when configuring a con-
nector) or to listen on (when configuring an acceptor). The default value for this property is localhost. Note
that if you want your servers accessible from other nodes, don't bind to localhost!

• jbm.remoting.netty.port. This specified the port to connect to (when configuring a connector) or to listen on
(when configuring an acceptor). The default value for this property is 5445.

• jbm.remoting.netty.tcpnodelay. If this is true then Nagle's algorithm
[http://en.wikipedia.org/wiki/Nagle's_algorithm] will be enabled. The default value for this property is true.

• jbm.remoting.netty.tcpsendbuffersize. This parameter determines the size of the TCP send buffer in bytes.
The default value for this property is 32768 bytes (32KiB).

TCP buffer sizes should be tuned according to the bandwidth and latency of your network. Here's a good link
that explains the theory behind this [http://www-didc.lbl.gov/TCP-tuning/].

In summary TCP send/receive buffer sizes should be calculated as:

buffer_size = bandwidth * RTT.

Where bandwidth is in bytes per second and network round trip time (RTT) is in seconds. RTT can be easily
measured using the ping utility.

For fast networks you may want to increase the buffer sizes from the defaults.

• jbm.remoting.netty.tcpreceivebuffersize. This parameter determines the size of the TCP receive buffer in
bytes. The default value for this property is 32768 bytes (32KiB).

Configuring the Transport

49

http://en.wikipedia.org/wiki/Nagle's_algorithm
http://www-didc.lbl.gov/TCP-tuning/

14.4.2. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting TCP connections
using the Secure Sockets Layer SSL

Please see the examples for a full working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

• jbm.remoting.netty.sslenabled. Must be true to enable SSL.

• jbm.remoting.netty.keystorepath. This is the path to the SSL key store on the client which holds the client
certificates.

• jbm.remoting.netty.keystorepassword. This is the password for the client certificate key store on the client.

• jbm.remoting.netty.truststorepath. This is the path to the trusted client certificate store on the server.

• jbm.remoting.netty.truststorepassword. This is the password to the trusted client certificate store on the
server.

14.4.3. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls only allow HT-
TP traffice to pass.

Please see the examples for a full working example of using Netty HTTP.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

• jbm.remoting.netty.httpenabled. Must be true to enable HTTP.

• jbm.remoting.netty.httpclientidletime. How long a client can be idle before sending an empty http re-
quest to keep the connection alive

• jbm.remoting.netty.httpclientidlescanperiod. How often, in milliseconds, to scan for idle clients

• jbm.remoting.netty.httpresponsetime. How long the server can wait before sending an empty http response
to keep the connection alive

• jbm.remoting.netty.httpserverscanperiod. How often, in milliseconds, to scan for clients needing re-
sponses

• jbm.remoting.netty.httprequiressessionid. If true the client will wait after the first call to receive a ses-
sion id. Used the http connector is connecting to servlet acceptor (not recommended)

14.4.4. Configuring Netty Servlet

We also provide a Netty servlet transport for use with JBoss Messaging. The servlet transport allows JBoss Mes-

Configuring the Transport

50

saging traffic to be tunneled over HTTP to a servlet running in a servlet engine which then redirects it to an in-VM
JBoss Messaging server.

The servlet transport differs from the Netty HTTP transport in that, with the HTTP transport JBoss Messaging ef-
fectively acts a web server listening for HTTP traffic on, e.g. port 80 or 8080, whereas with the servlet transport
JBM traffic is proxied through a servlet engine which may already be serving web site or other applications. This
allows JBoss Messaging to be used where corporate policies may only allow a single web server listening on an
HTTP port, and this needs to serve all applications including messaging.

Please see the examples for a full working example of the servlet transport being used.

To configure a servlet engine to work the Netty Servlet transport we need to do the following things:

• Deploy the servlet. Here's an example web.xml describing a web application that uses the servlet:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<servlet>
<servlet-name>NettyServlet</servlet-name>
<servlet-class>org.jboss.netty.channel.socket.http.HttpTunnelingServlet</servlet-class>
<init-param>

<param-name>endpoint</param-name>
<param-value>local:org.jboss.jbm</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>NettyServlet</servlet-name>
<url-pattern>/JBMServlet</url-pattern>

</servlet-mapping>
</web-app>

• We also need to add a special Netty invm acceptor on the server side configuration.

Here's a snippet from the jbm-configuration.xml file showing that acceptor being defined:

<acceptors>

<acceptor name="netty-invm">
<factory-class>

org.jboss.messaging.integration.transports.netty.NettyAcceptorFactory
</factory-class>
<param key="jbm.remoting.netty.useinvm" value="true" type="Boolean"/>
<param key="jbm.remoting.netty.host" value="org.jboss.jbm" type="String"/>

</acceptor>

</acceptors>

• Lastly we need a connector for the client, this again will be configured in the jbm-configuration.xml file as
such:

<connectors>

Configuring the Transport

51

<connector name="netty-servlet">
<factory-class>

org.jboss.messaging.integration.transports.netty.NettyConnectorFactory
</factory-class>
<param key="jbm.remoting.netty.host" value="localhost" type="String"/>
<param key="jbm.remoting.netty.port" value="8080" type="Integer"/>
<param key="jbm.remoting.netty.useservlet" value="true" type="Boolean"/>
<param key="jbm.remoting.netty.servletpath"

value="/messaging/JBMServlet" type="String"/>
</connector>

</connectors>

Heres a list of the init params and what they are used for

• endpoint - This is the name of the netty acceptor that the servlet will forward its packets too. You can see it
matches the name of the jbm.remoting.netty.host param.

The servlet pattern configured in the web.xml is the path of the URL that is used. The connector param
jbm.remoting.netty.servletpath on the connector config must match this using the application context of the
web app if there is one.

Its also possible to use the servlet transport over SSL. simply add the following configuration to the connector:

<connector name="netty-servlet">
<factory-class>org.jboss.messaging.integration.transports.netty.NettyConnectorFactory</factory-class>
<param key="jbm.remoting.netty.host" value="localhost" type="String"/>
<param key="jbm.remoting.netty.port" value="8443" type="Integer"/>
<param key="jbm.remoting.netty.useservlet" value="true" type="Boolean"/>
<param key="jbm.remoting.netty.servletpath" value="/messaging/JBMServlet" type="String"/>
<param key="jbm.remoting.netty.sslenabled" value="true" type="Boolean"/>
<param key="jbm.remoting.netty.keystorepath" value="path to a keystoree" type="String"/>
<param key="jbm.remoting.netty.keystorepassword" value="keysore password" type="String"/>

</connector>

You will also have to configure the Application server to use a KeyStore. Edit the server.xml file that can be
found under server/default/deploy/jbossweb.sar of the Application Server installation and edit the SSL/TLS
connector configuration to look like the following:

<Connector protocol="HTTP/1.1" SSLEnabled="true"
port="8443" address="${jboss.bind.address}"
scheme="https" secure="true" clientAuth="false"
keystoreFile="path to a keystore"
keystorePass="keystore password" sslProtocol = "TLS" />

In both cases you will need to provide a keystore and password. Take a look at the servlet ssl example shipped with
JBoss Messaging for more detail.

Configuring the Transport

52

15
Dead Connections and Session Multiplexing

In this section we will discuss connection time-to-live (TTL) and explain how JBoss Messaging deals with crashed
clients and clients which have exited without cleanly closing their resources. We'll also discuss how JBoss Mes-
saging multiplexes several sessions on a single connection.

15.1. Cleaning up Dead Connection Resources on the Server

Before a JBoss Messaging client application exits it is considered good practice that it should close its resources in
a controlled manner, using a finally block.

Here's an example of a well behaved core client application closing its session and session factory in a finally
block:

ClientSessionFactory sf = null;
ClientSession session = null;

try
{

sf = new ClientSessionFactoryImpl(...);

session = sf.createSession(...);

... do some stuff with the session...
}
finally
{

if (session != null)
{

session.close();
}

if (sf != null)
{

sf.close();
}

}

And here's an example of a well behaved JMS client application:

Connection jmsConnection = null;

try
{

ConnectionFactory jmsConnectionFactory = new JBossConnectionFactory(...);

jmsConnection = jmsConnectionFactory.createConnection();

53

... do some stuff with the connection...
}
finally
{

if (connection != null)
{

connection.close();
}

}

Unfortunately users don't always write well behaved applications, and sometimes clients just crash so they don't
have a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these were not removed
they would cause a resource leak on the server and over time this result in the server running out of memory or oth-
er resources.

We have to balance the requirement for cleaning up dead client resources with the fact that sometimes the network
between the client and the server can fail and then come back, allowing the client to reconnect. JBoss Messaging
supports client reconnection, so we don't want to clean up "dead" server side resources too soon or this will prevent
any client from reconnecting, as it won't be able to find its old sessions on the server.

JBoss Messaging makes all of this configurable. For each ClientSessionFactory we define a connection TTL. Ba-
sically, the TTL determines how long the server will keep a connection alive in the absence of any data arriving
from the client. If the client is idle it will automatically send "ping" packets periodically to prevent the server from
closing it down. If the server doesn't receive any packets on a connection for the connection TTL time, then it will
automatically close all the sessions on the server that relate to that connection.

If you're using JMS, the connection TTL is defined by the ConnectionTTL attribute on a JBossConnectionFactory

instance, or if you're deploying JMS connection factory instances direct into JNDI on the server side, you can spe-
cify it in the xml config, using the parameter connection-ttl.

The default value for connection ttl is 300000ms, i.e. 5 minutes. A value of -1 for ConnectionTTL means the server
will never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all values used by a
global value set on the server side. This can be done by specifying the connection-ttl-override attribute in the
server side configuration. The default value for connection-ttl-override is -1 which means "do not override"
(i.e. let clients use their own values).

15.2. Detecting failure from the client side.

In the previous section we discussed how the client sends pings to the server and how "dead" connection resources
are cleaned up by the server. There's also another reason for pinging, and that's for the client to be able to detect
that the server or network has failed.

As long as the client is receiving packets from the server it will consider the connection to be still alive. If the con-
nection is idle the server will periodically send packets to the client to prevent the client from thinking the connec-
tion is dead.

Dead Connections and Session Multiplexing

54

If the client does not receive any packets for client-failure-check-period milliseconds then it will consider the
connection failed and will either initiate failover, or call any FailureListener instances (or ExceptionListener

instances if you are using JMS) depending on how it has been configured.

If you're using JMS it's defined by the ClientFailureCheckPeriod attribute on a JBossConnectionFactory in-
stance, or if you're deploying JMS connection factory instances direct into JNDI on the server side, you can specify
it in the jbm-jms.xml configuration file, using the parameter client-failure-check-period.

The default value for client failure check period is 5000ms, i.e. 5 seconds. A value of -1 means the client will never
fail the connection on the client side if no data is received from the server. Typically this is much lower than con-
nection TTL to allow clients to reconnect in case of transitory failure.

15.3. Session Multiplexing

Each ClientSessionFactory creates connections on demand to the same server as you create sessions. Each in-
stance will create up to a maximum of maxConnections connections to the same server. Subsequent sessions will
use one of the already created connections in a round-robin fashion.

To illustrate this, let's say maxConnections is set to 8. The first eight sessions that you create will have a new un-
derlying connection created for them, the next eight you create will use one of the previously created connections.

The default value for maxConnections is 8, if you prefer you can set it to a lower value so each factory maintains
only one underlying connection. We choose a default value of 8 because on the server side each packet read from a
particular connection is read serially by the same thread, so, if all traffic from the clients sessions is multiplexed on
the same connection it will all be processed by the same thread on the server, which might not be a good use of
cores on the server. By choosing 8 then different sessions traffic from the same client can be processed by different
cores. If you have many different clients then this may not be relevant anyway.

To change the value of maxConnections simply use the setter method on the ClientSessionFactory immediately
after constructing it, or if you are using JMS use the setter on the JBossConnectionFactory or specify the max-

connections parameter in the connection factory xml configuration in jbm-jms.xml.

Dead Connections and Session Multiplexing

55

16
Resource Manager Configuration

JBoss Messaging has its own Resource Manager for handling the lifespan of XA transactions. When a transaction
is started the resource manager is notified and keeps a record of the transaction and its current state. It is possible in
some cases for a transaction to be started but the forgotten about. Maybe the client died and never came back. If
this happens then the transaction will just sit there indefinitely.

To cope with this JBoss Messaging can, if configured, scan for old transactions and rollback any it finds. The de-
fault for this is 60000 milliseconds (1 minute), i.e. any transactions older than 60 seconds are removed, however
this can be changed by editing the transaction-timeout property in jbm-configuration.xml. The property
transaction-timeout-scan-period configures how often, in milliseconds, to scan for old transactions.

56

17
Flow Control

Flow control is used to limit the flow of data between a client and server, or a server and a server in order to pre-
vent the client or server being overwhelmed with data.

17.1. Consumer Flow Control

This controls the flow of data between the server and the client as the client consumes messages. For performance
reasons clients normally buffer messages before delivering to the consumer via the receive() method or asyn-
chronously via a message listener. If the consumer cannot process messages as fast as they are being delivered and
stored in the internal buffer, then you could end up with a situation where messages just keep building up and are
not processed for a long time.

17.1.1. Window-Based Flow Control

By default, JBoss Messaging consumers buffer messages from the server in a client side buffer before the client
consumes them. This improves performance: otherwise every time the client consumes a message, JBoss Mes-
saging would have to go the server to request the next message. In turn, this message would then get sent to the cli-
ent side, if one was available.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, JBoss Messaging pre-fetches messages into a buffer on each consumer. The total maximum size of
messages (in bytes) that will be buffered on each consumer is determined by the consumer-window-size paramet-
er.

By default, the consumer-window-size is set to 1 MiB (1024 * 1024 bytes).

The value can be:

• -1 for an unbounded buffer

• 0 to not buffer any messages. See Section 9.1.33 for working example of a consumer with no buffering.

• >0 for a buffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the messaging use case.
As an example, let's consider the two extremes:

Fast consumers
Fast consumers can process messages as fast as they consume them (or even faster)

57

To allow fast consumers, set the consumer-window-size to -1. This will allow unbounded message buffering
on the client side.

Use this setting with caution: it can overflow the client memory if the consumer is not able to process messages
as fast as it receives them.

Slow consumers
Slow consumers takes significant time to process each message and it is desirable to prevent buffering mes-
sages on the client side so that they can be delivered to another consumer instead.

Consider a situation where a queue has 2 consumers 1 of which is very slow. Messages are delivered in a round
robin fashion to both consumers, the fast consumer processes all of its messages very quickly until its buffer is
empty. At this point there are still messages awaiting to be processed by the slow consumer which could be be-
ing consumed by the other consumer.

To allow slow consumers, set the consumer-window-size to 0 (for no buffer at all). This will prevent the slow
consumer from buffering any messages on the client side. Messages will remain on the server side ready to be
consumed by other consumers.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between. In that case, set-
ting the value of consumer-window-size to optimize performance depends on the messaging use case and requires
benchmarks to find the optimal value, but a value of 1MiB is fine in most cases.

17.1.1.1. Using Core API

If JBoss Messaging Core API is used, the consumer window size is specified by ClientSessionFact-

ory.setConsumerWindowSize() method and some of the ClientSession.createConsumer() methods.

17.1.1.2. Using JMS

if JNDI is used to look up the connection factory, the consumer window size is configured in jbm-jms.xml:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>

<!-- Set the consumer window size to 0 to have *no* buffer on the client side -->
<consumer-window-size>0</consumer-window-size>

</connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by JBossConnectionFact-

ory.setConsumerWindowSize() method.

Please see Section 9.1.33 for an example which shows how to configure JBoss Messaging to prevent consumer buf-
fering when dealing with slow consumers.

17.1.2. Rate limited flow control

Flow Control

58

It is also possible to control the rate at which a consumer can consumer messages. This is a form of throttling and
can be used to make sure that a consumer never consumes messages at a rate faster than the rate specified.

The rate must be a positive integer to enable and is the maximum desired message consumption rate specified in
units of messages per second. Setting this to -1 disables rate limited flow control. The default value is -1.

Please see Section 9.1.26 for a working example of limiting consumer rate.

17.1.2.1. Using Core API

If the JBoss Messaging core API is being used the rate can be set via the ClientSessionFact-

ory.setConsumerMaxRate(int consumerMaxRate) method or alternatively via some of the ClientSes-

sion.createConsumer() methods.

17.1.2.2. Using JMS

If JNDI is used to look up the connection factory, the max rate can be configured in jbm-jms.xml:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>
<!-- We limit consumers created on this connection factory to consume messages

at a maximum rate
of 10 messages per sec -->
<consumer-max-rate>10</consumer-max-rate>

</connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the JBossConnectionFact-

ory.setConsumerMaxRate(int consumerMaxRate) method.

Note

Rate limited flow control can be used in conjunction with window based flow control. Rate limited flow
control only effects how many messages a client can consume in a second and not how many messages are
in its buffer. So if you had a slow rate limit and a high window based limit the clients internal buffer would
soon fill up with messages.

Please see Section 9.1.26 for an example which shows how to configure JBoss Messaging to prevent consumer buf-
fering when dealing with slow consumers.

17.2. Producer flow control

JBoss Messaging also can limit the amount of data sent from a client to a server to prevent the server being over-
whelmed.

17.2.1. Window based flow control

JBoss Messaging clients maintain a buffer of commands that have been sent to the server, thus provides a form of

Flow Control

59

flow control. Please see Chapter 18 for more information on this.

17.2.2. Rate limited flow control

JBoss Messaging also allows the rate a producer can emit message to be limited, in units of messages per second.
By specifying such a rate, JBoss Messaging will ensure that producer never produces messages at a rate higher than
that specified.

The rate must be a positive integer to enable and is the maximum desired message consumption rate specified in
units of messages per second. Setting this to -1 disables rate limited flow control. The default value is -1.

Please see the Section 9.1.30 for a working example of limiting producer rate.

17.2.2.1. Using Core API

If the JBoss Messaging core API is being used the rate can be set via the ClientSessionFact-

ory.setProducerMaxRate(int consumerMaxRate) method or alternatively via some of the ClientSes-

sion.createProducer() methods.

17.2.2.2. Using JMS

If JNDI is used to look up the connection factory, the max rate can be configured in jbm-jms.xml:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>
<!-- We limit producers created on this connection factory to produce messages

at a maximum rate
of 10 messages per sec -->
<producer-max-rate>10</producer-max-rate>

</connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the JBossConnectionFact-

ory.setProducerMaxRate(int consumerMaxRate) method.

Flow Control

60

18
Command Buffering

As JBoss Messaging clients send commands to their servers they store each sent command in an in-memory buffer.
In the case that connection failure occurs and the client subsequently reconnects to the same server or fails over
onto a replica server, as part of the reconnection protocol the server informs the client during reconnection with the
id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent commands from its
buffer so that the client and server can reconcile their states.

The size of this buffer is configured by the ProducerWindowSize parameter, when the server has received Produ-

cerWindowSize bytes of commands and processed them it will send back a command confirmation to the client,
and the client can then free up space in the buffer.

If you are using JMS and you're using the JMS service on the server to load your JMS connection factory instances
into JNDI then this parameter can be configured in jbm-jms.xml using the element producer-window-size a. If
you're using JMS but not using JNDI then you can set these values directly on the JBossConnectionFactory in-
stance using the appropriate setter method.

If you're using core you can set these values directly on the ClientSessionFactory instance using the appropriate
setter method.

The send window is specified in bytes, and has a default value of 1MiB.

When the send buffer becomes full, any attempts to send more commands from the client will block until the client
receives a confirmation from the server and clears out the buffer. Because of the blocking, the command buffer per-
forms a type of flow control, preventing the client from overwhelming the server with commands.

Setting this parameter to -1 disables any flow control on sending.

61

19
Guarantees of Transactional and Non-Transactional
Sends and Asynchronous Send Acknowledgements

19.1. Guarantees of Transaction Completion

When committing or rolling back a transaction with JBoss Messaging, the request to commit or rollback is sent to
the server, and the call will block on the client side until a response has been received from the server that the com-
mit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and depending on the
value of the parameter journal-sync-transactional the server will ensure that the commit or rollback is durably
persisted to storage before sending the response back to the client. If this parameter has the value false then com-
mit or rollback may not actually get persisted to storage until some time after the response has been sent to the cli-
ent. In event of server failure this may mean the commit or rollback never gets persisted to storage. The default
value of this parameter is true so the client can be sure all transaction commits or rollbacks have been persisted to
storage by the time the call to commit or rollback returns.

Setting this parameter to false can improve performance at the expense of some loss of transaction durability.

This parameter is set in jbm-configuration.xml

19.2. Guarantees of Non Transactional Message Sends

If you are sending messages to a server using a non transacted session, JBoss Messaging can be configured to block
the call to send until the message has definitely reached the server, and a response has been sent back to the client.
This can be configured individually for persistent and non-persistent messages, and is determined by the following
two parameters:

• BlockOnPersistentSend. If this is set to true then all calls to send for persistent messages on non transacted
sessions will block until the message has reached the server, and a response has been sent back. The default
value is false.

• BlockOnNonPersistentSend. If this is set to true then all calls to send for non-persistent messages on non
transacted sessions will block until the message has reached the server, and a response has been sent back. The
default value is false.

Setting block on sends to true can reduce performance since each send requires a network round trip before the
next send can be performed. This means the performance of sending messages will be limited by the network round
trip time (RTT) of your network, rather than the bandwidth of your network. For better performance we recom-

62

mend either batching many messages sends together in a transaction since with a transactional session, only the
commit / rollback blocks not every send, or, using JBoss Messaging's advanced asynchronous send acknowledge-
ments feature described in Section 19.4.

If you are using JMS and you're using the JMS service on the server to load your JMS connection factory instances
into JNDI then these parameters can be configured in jbm-jms.xml using the elements block-on-persistent-send
and block-on-non-persistent-send. If you're using JMS but not using JNDI then you can set these values dir-
ectly on the JBossConnectionFactory instance using the appropriate setter methods.

If you're using core you can set these values directly on the ClientSessionFactory instance using the appropriate
setter methods.

When the server receives a message sent from a non transactional session, and that message is persistent and the
message is routed to at least one durable queue, then the server will persist the message in permanent storage. If the
journal parameter journal-sync-non-transactional is set to true the server will not send a response back to the
client until the message has been persisted and the server has a guarantee that the data has been persisted to disk.
The default value for this parameter is false.

19.3. Guarantees of Non Transactional Acknowledgements

If you are acknowledging the delivery of a message at the client side using a non transacted session, JBoss Mes-
saging can be configured to block the call to acknowledge until the acknowledge has definitely reached the server,
and a response has been sent back to the client. This is configured with the parameter BlockOnAcknowledge. If this
is set to true then all calls to acknowledge on non transacted sessions will block until the acknowledge has reached
the server, and a response has been sent back. You might want to set this to true if you want to implement a strict
at most once delivery policy. The default value is false

19.4. Asynchronous Send Acknowledgements

If you are using a non transacted session but want a guarantee that every message sent to the server has reached it,
then, as discussed in Section 19.2, you can configure JBoss Messaging to block the call to send until the server has
received the message, persisted it and sent back a response. This works well but has a severe performance penalty -
each call to send needs to block for at least the time of a network round trip (RTT) - the performance of sending is
thus limited by the latency of the network, not limited by the network bandwidth.

Let's do a little bit of maths to see how severe that is. We'll consider a standard 1Gib ethernet network with a net-
work round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if it blocks on each
message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU size is used on the network, then a 1GiB network
has a theoretical upper limit of (1024 * 1024 * 1024 / 8) / 1500 = 89478 messages per second if messages are sent
without blocking! These figures aren't an exact science but you can clearly see that being limited by network RTT
can have serious effect on performance.

To remedy this, JBoss Messaging provides an advanced new feature called asynchronous send acknowledgements.
With this feature, JBoss Messaging can be configured to send messages without blocking in one direction and

Guarantees of Transactional and Non-Transactional Sends and

63

asynchronously getting acknowledgement from the server that the messages were received in a separate stream. By
de-coupling the send from the acknowledgement of the send, the system is not limited by the network RTT, but is
limited by the network bandwidth. Consequently better throughput can be achieved than is possible using a block-
ing approach, while at the same time having absolute guarantees that messages have successfully reached the serv-
er.

19.4.1. Asynchronous Send Acknowledgements

To use the feature using the core API, you implement the interface
org.jboss.messaging.core.client.SendAcknowledgementHandler and set a handler instance on your Client-

Session.

Then, you just send messages as normal using your ClientSession, and as messages reach the server, the server
will send back an acknowledgment of the send asynchronously, and some time later you are informed at the client
side by JBoss Messaging calling your handler's sendAcknowledged(ClientMessage message) method, passing in a
reference to the message that was sent.

Please see Section 9.1.42 for a full working example.

Guarantees of Transactional and Non-Transactional Sends and

64

20
Message Redelivery and Undelivered Messages

Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them is rolled back). Such
a message goes back to its queue ready to be redelivered. However, this means it is possible for a message to be de-
livered again and again without any success and remain in the queue, clogging the system.

There are 2 ways to deal with these undelivered messages:

• Delayed redelivery.

It is possible to delay messages redelivery to let the client some time to recover from transient failures and not
overload its network or CPU resources

• Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of unsuccessful deliveries,
messages are removed from the queue and will not be delivered again

Both options can be combined for maximum flexibility.

20.1. Delayed Redelivery

Delaying redelivery can often be useful in the case that clients regularly fail or rollback. Without a delayed redeliv-
ery, the system can get into a "thrashing" state, with delivery being attempted, the client rolling back, and delivery
being re-attempted ad infinitum in quick succession, consuming valuable CPU and network resources.

20.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<!-- delay redelivery of messages for 5s -->
<address-setting match="jms.queue.exampleQueue">

<redelivery-delay>5000</redelivery-delay>
</address-setting>

If a redelivery-delay is specified, JBoss Messaging will wait this delay before redelivering the messages

By default, there is no redelivery delay (redelivery-delayis set to 0).

Address wildcards can be used to configure redelivery delay for a set of addresses (see Chapter 11).

65

20.1.2. Example

See Section 9.1.12 for an example which shows how delayed redelivery is configured and used with JMS.

20.2. Dead Letter Addresses

To prevent a client infinitely receiving the same undelivered message (regardless of what is causing the unsuccess-
ful deliveries), messaging systems define dead letter messages: after a specified unsuccessful delivery attempts, the
message is removed from the queue and send instead to a dead letter address.

Any dead letter messages can then be diverted to queue(s) where they can later be perused by the system adminis-
trator for action to be taken.

JBoss Messaging's addresses can be assigned a dead letter address. Once the messages have be unsuccessfully de-
livered for a given number of attempts, they are removed from the queue and sent to the dead letter address. These
dead letter messages can later be consumed for further inspection.

20.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<!-- undelivered messages in exampleQueue will be sent to the dead letter address
deadLetterQueue after 3 unsuccessful delivery attempts

-->
<address-setting match="jms.queue.exampleQueue">

<dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>
<max-delivery-attempts>3</max-delivery-attempts>

</address-setting>

If a dead-letter-address is not specified, messages will removed after max-delivery-attempts unsuccessful at-
tempts.

By default, messages are redelivered 10 times at the maximum. Set max-delivery-attempts to -1 for infinite rede-
liveries.

For example, a dead letter can be set globally for a set of matching addresses and you can set max-deliv-

ery-attempts to -1 for a specific address setting to allow infinite redeliveries only for this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see Chapter 11).

20.2.2. Dead Letter Properties

Dead letter messages which are consumed from a dead letter address have the following property:

• _JBM_ORIG_DESTINATION

a String property containing the original destination of the dead letter message

Message Redelivery and Undelivered Messages

66

20.2.3. Example

See Section 9.1.11 for an example which shows how dead letter is configured and used with JMS.

20.3. Delivery Count Persistence

In normal use, JBoss Messaging does not update delivery count persistently until a message is rolled back (i.e. the
delivery count is not updated before the message is delivered to the consumer). In most messaging use cases, the
messages are consumed, acknowledged and forgotten as soon as they are consumed. In these cases, updating the
delivery count persistently before delivering the message would add an extra persistent step for each message de-
livered, implying a significant performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens, in the event of a
server crash, messages might have been delivered but that will not have been reflected in the delivery count. Dur-
ing the recovery phase, the server will not have knowledge of that and will deliver the message with redelivered

set to false while it should be true.

As this behavior breaks strict JMS semantics, JBoss Messaging allows to persist delivery count before message de-
livery but disabled it by default for performance implications.

To enable it, set persist-delivery-count-before-delivery to true in jbm-configuration.xml:

<persist-delivery-count-before-delivery>true</persist-delivery-count-before-delivery>

Message Redelivery and Undelivered Messages

67

21
Message Expiry

Messages can be set with an optional time to live when sending them. Such messages will be retained in the mes-
saging system until their time to live is reached.

JBoss Messaging's addresses can be assigned a expiry address so that, when messages are expired, they are re-
moved from the queue and sent to the expiry address. Many different queues can be bound to an expiry address.
These expired messages can later be consumed for further inspection.

21.1. Message Expiry

Using JBoss Messaging Core API, you can set an expiration time directly on the message:

// message will expire in 5000ms from now
message.setExpiration(System.currentTimeMillis() + 5000);

JMS MessageProducer allows to set a TimeToLive for the messages it sent:

// messages sent by this producer will be retained for 5s (5000ms) before expiration
producer.setTimeToLive(5000);

Expired messages which are consumed from an expiry address have the following properties:

• _JBM_ORIG_DESTINATION

a String property containing the original destination of the expired message

• _JBM_ACTUAL_EXPIRY

a Long property containing the actual expiration time of the expired message

21.2. Configuring Expiry Addresses

Expiry address are defined in the address-setting configuration:

<!-- expired messages in exampleQueue will be sent to the expiry address expiryQueue -->
<address-setting match="jms.queue.exampleQueue">

<expiry-address>jms.queue.expiryQueue</expiry-address>
</address-setting>

68

If messages are expired and no expiry address is specified, messages are simply removed from the queue. Address
wildcards can be used to configure expiry address for a set of addresses (see Chapter 11).

21.3. Configuring The Expiry Reaper Thread

A reaper thread is periodically inspecting the queues to check if messages have expired.

The reaper thread can be configured with the following properties in jbm-configuration.xml

• message-expiry-scan-period

How often the queues will be scanned to detect expired messages (in milliseconds, default is 30000ms)

• message-expiry-thread-priority

The reaper thread priority (it must be between 0 and 9, 9 being the highest priority, default is 3)

21.4. Example

See Section 9.1.28 for an example which shows how message expiry is configured and used with JMS.

Message Expiry

69

22
Large Messages

JBoss Messaging supports sending and receiving of huge messages, even when the client and server are running
with limited memory. The only limit to the size of a message that can be sent or consumed is the amount of disk
space you have available. We have tested sending and consuming messages up to 8 GiB in size with a client and
server running in just 50MiB of RAM!

To send a large message, the user can set an InputStream on a message body, and when that message is sent, JBoss
Messaging will read the InputStream. A FileInputStream could be used for example to send a huge message
from a huge file on disk.

As the InputStream is read the data is sent to the server as a stream of fragments. The server persists these frag-
ments to disk as it receives them and when the time comes to deliver them to a consumer they are read back of the
disk, also in fragments and sent down the wire. When the consumer receives a large message it initially receives
just the message with an empty body, it can then set an OutputStream on the message to stream the huge message
body to a file on disk or elsewhere. At no time is the entire message body stored fully in memory, either on the cli-
ent or the server.

22.1. Configuring the server

Large messages are stored on a disk directory on the server side, as configured on the main configuration file.

The configuration property large-messages-directory specifies where large messages are stored.

<configuration xmlns="urn:jboss:messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:messaging /schema/jbm-configuration.xsd">

...

<large-message-directory> *** type any folder you choose *** </large-message-directory>

...

</configuration

By default the large message directory is data/largemessages

For the best performance we recommend large messages directory is stored on a different physical volume to the
message journal or paging directory.

22.2. Setting the limits

70

Any message large than a certain size is considered a large message. Large messages will be split up and sent in
fragments. This is determined by the parameter min-large-message-size

The default value is 100KiB.

22.2.1. Using Core API

If the JBoss Messaging Core API is used, the minimal large message size is specified by ClientSessionFact-

ory.setMinLargeMessageSize.

ClientSessionFactory factory =
new ClientSessionFactoryImpl(new
TransportConfiguration(NettyConnectorFactory.class.getName()), null);

factory.setMinLargeMessageSize(25 * 1024);

Section 14.3 will provide more information on how to instantiate the session factory.

22.2.2. Using JMS

If JNDI is used to look up the connection factory, the minimum large message size is specified in jbm-jms.xml

...
<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>

<entry name="ConnectionFactory"/>
<entry name="XAConnectionFactory"/>

</entries>

<min-large-message-size>250000</min-large-message-size>
</connection-factory>
...

If the connection factory is being instantiated directly, the minimum large message size is specified by JBossCon-

nectionFactory.setMinLargeMessageSize.

22.3. Streaming large messages

JBoss Messaging supports setting the body of messages using input and output streams (java.lang.io)

These streams are then used directly for sending (input streams) and receiving (output streams) messages.

When receiving messages there are 2 ways to deal with the output stream you may choose to block while the output
stream is recovered using the method ClientMessage.saveOutputStream or alternatively using the method Cli-

entMessage.setOutputstream which will asynchronously write the message to the stream. If you choose the latter
the consumer must be kept alive until the message has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored in your disk, but you
could also send things like JDBC Blobs, SocketInputStream, things you recovered from HTTPRequests etc. Any-
thing as long as it implements java.io.InputStream for sending messages or java.io.OutputStream for receiv-
ing them.

Large Messages

71

22.3.1. Streaming over Core API

The following table shows a list of methods available at ClientMessage which are also available through JMS by
the use of object properties.

Table 22.1. org.jboss.messaging.core.client.ClientMessage API

Name Description JMS Equivalent Property

setBodyInputStream(InputStream) Set the InputStream used to read a
message body when sending it.

JMS_JBM_InputStream

setOutputStream(OutputStream) Set the OutputStream that will re-
ceive the body of a message. This
method does not block.

JMS_JBM_OutputStream

saveOutputStream(OutputStream) Save the body of the message to
the OutputStream. It will block un-
til the entire content is transferred
to the OutputStream.

JMS_JBM_SaveStream

To set the output stream when receiving a core message:

...
ClientMessage msg = consumer.receive(...);

// This will block here until the stream was transferred
msg.saveOutputStream(someOutputStream);

ClientMessage msg2 = consumer.receive(...);

// This will not wait the transfer to finish
msg.setOutputStream(someOtherOutputStream);
...

Set the input stream when sending a core message:

...
ClientMessage msg = session.createMessage();
msg.setInputStream(dataInputStream);
...

22.3.2. Streaming over JMS

When using JMS, JBoss Messaging maps the streaming methods on the core API (see Table 22.1) by setting object
properties . You can use the method Message.setObjectProperty to set the input and output streams.

Large Messages

72

The InputStream can be defined through the JMS Object Property JMS_JBM_InputStream on messages being
sent:

BytesMessage message = session.createBytesMessage();

FileInputStream fileInputStream = new FileInputStream(fileInput);

BufferedInputStream bufferedInput = new BufferedInputStream(fileInputStream);

message.setObjectProperty("JMS_JBM_InputStream", bufferedInput);

someProducer.send(message);

The OutputStream can be set through the JMS Object Property JMS_JBM_SaveStream on messages being re-
ceived in a blocking way.

BytesMessage messageReceived = (BytesMessage)messageConsumer.receive(120000);

File outputFile = new File("huge_message_received.dat");

FileOutputStream fileOutputStream = new FileOutputStream(outputFile);

BufferedOutputStream bufferedOutput = new BufferedOutputStream(fileOutputStream);

// This will block until the entire content is saved on disk
messageReceived.setObjectProperty("JMS_JBM_SaveStream", bufferedOutput);

Setting the OutputStream could also be done in a non blocking way using the property JMS_JBM_InputStream.

// This won't wait the stream to finish. You need to keep the consumer active.
messageReceived.setObjectProperty("JMS_JBM_InputStream", bufferedOutput);

Note

When using JMS, Streaming large messages are only supported on StreamMessage and BytesMessage.

22.4. Streaming Alternative

If you choose not to use the InputStream or OutputStream capability of JBoss Messaging You could still access
the data directly in an alternative fashion.

On the Core API just get the bytes of the body as you normally would.

ClientMessage msg = consumer.receive();

byte[] bytes = new byte[1024];
for (int i = 0 ; i < msg.getBodySize(); i += bytes.length)
{

msg.getBody().readBytes(bytes);
// Whatever you want to do with the bytes

}

Large Messages

73

If using JMS API, BytesMessage and StreamMessage also supports it transparently.

BytesMessage rm = (BytesMessage)cons.receive(10000);

byte data[] = new byte[1024];

for (int i = 0; i < rm.getBodyLength(); i += 1024)
{

int numberOfBytes = rm.readBytes(data);
// Do whatever you want with the data

}

22.5. Other Types of Messages

JBoss Messaging supports large messages of type TextMessage, ObjectMessage and MapMessage transparently.
However those types of message will require a full reconstruction in memory in order to work properly.

For example: You may choose to send a 1MiB String over a TextMessage. When you read the message Java will
need to parse the body of the message back into a String, so you need to have enough memory to allocate your
large messages when using those types. If you use BytesMessage or StreamMessage this restriction won't apply.

22.6. Resending a large message

As large messages are broken into smaller packets the fragmented packets are delivered individually from server to
client. The message fragments are not kept in memory so once they are delivered it is not possible to resend them.

As a result resending a large messages after consumption will not work as seen on this example:

BytesMessage bm = (BytesMessage)cons.receive(1000);

bm.setObjectProperty("JMS_JBM_SaveStream", bufferedOutput);

/// This will not work! The body streaming is already gone!
someOtherProducer.send(bm); // resending the message to another destination;

22.7. Large message example

Please see Section 9.1.21 for an example which shows how large message is configured and used with JMS.

Large Messages

74

23
Paging

JBoss Messaging transparently supports huge queues containing millions of messages while the server is running
with limited memory.

In such a situation it's not possible to store all of the queues in memory at any one time, so JBoss Messaging trans-
parently pages messages into and out of memory as they are needed, thus allowing massive queues with a low
memory footprint.

JBoss Messaging will start paging messages to disk, when either a) the size of the queue reaches a total configured
maximum size or b) The total size of all queues reaches a configured maximum size.

These two modes of operation are called Address Paging Mode and Global Paging Mode .

23.1. Page Files

Messages are stored per address on the file system. Each address has an individual folder where messages are
stored in multiple files (page files). Each file will contain messages up to a max configured size.
(page-size-bytes). When reading page-files all messages on the page-file are read, routed and the file is deleted
as soon as the messages are recovered.

23.2. Global Paging Mode

JBoss Messaging goes into global paging mode when the total memory used by all queues reaches a configured
maximum value, determined by paging-max-global-size-bytes.

These messages are depaged back into memory once enough memory (global-page-size) has been freed up.

23.2.1. Configuration

Global paging parameters are specified on the main configuration file.

<configuration xmlns="urn:jboss:messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:messaging /schema/jbm-configuration.xsd">

...

<paging-max-global-size-bytes>20485760</paging-max-global-size-bytes>
<global-page-size>1048576</global-page-size>

...

75

Table 23.1. Paging Configuration Parameters

Property Name Description Default

paging-directory Where page files are stored. JBoss
Messaging will create one folder
for each address being paged under
this configured location.

data/paging

paging-max-global-size-bytes JBoss Messaging enters into global
page mode as soon as the total
memory consumed by messages
hits this value.

-1 (disabled)

global-page-size The standard size of a page-file.
JBoss Messaging will only read
messages when there is enough
space to read at least one page file,
determined by this value.

10MiB (10 * 1024 * 1024 bytes)

23.3. Address Paging Mode

It is also possible to configure paging at the address level. As soon as messages delivered to an address exceed the
configured size, that address alone goes into page mode.

23.3.1. Configuration

Address level configuration is done at the address settings.

<address-settings>
<address-setting match="jms.someaddress">

<max-size-bytes>-1</max-size-bytes>
<page-size-bytes>10485760</page-size-bytes>
<drop-messages-when-full>10485760</drop-messages-when-full>

</address-setting>
</address-settings>

This is the list of available parameters on the address settings.

Table 23.2. Paging Address Settings

Property Name Description Default

max-size What's the max memory the ad-
dress could have before entering
on page mode.

-1 (disabled)

Paging

76

Property Name Description Default

page-size-bytes The size of each page file used on
the paging system

10MiB (10 * 1024 * 1024 bytes)

drop-messages-when-full if true, messages are dropped in-
stead of paged when used-memory

is greater than max-size

false

23.4. Caution with Addresses with Multiple Queues

When a message is routed to an address that has multiple queues bound to it, e.g. a JMS subscription, there is only
1 copy of the message in memory. Each queue only deals with a reference to this. Because of this the memory is
only freed up once all queues referencing the message have delivered it. This means that if not all queues deliver
the message we can end up in a state where messages to not get delivered.

For example:

• An address has 10 queues

• One of the queues does not deliver its messages (maybe because of a slow consumer).

• Messages continually arrive at the address and paging is started.

• The other 9 queues are empty even though messages have been sent.

In this example we have to wait until the last queue has delivered some of its messages before we depage and the
other queues finally receive some more messages.

23.5. Example

See Section 9.1.34 for an example which shows how to use paging with JBoss Messaging.

Paging

77

24
Queue Attributes

Queue attributes can be set in one of two ways. Either by configuring them using the configuration file or by using
the core API. This chapter will explain how to configure each attribute and what effect the attribute has.

24.1. Predefined Queues

Queues can be predefined via configuration at a core level or at a JMS level. Firstly lets look at a JMS level.

The following shows a queue predefined in the jbm-jms.xml configuration file.

<queue name="selectorQueue">
<entry name="/queue/selectorQueue"/>
<selector string="color='red'"/>
<durable>true</durable>

</queue>

This name attribute of queue defines the name of the queue. When we do this at a jms level we follow a naming
convention so the actual name of the core queue will be jms.queue.selectorQueue.

The entry element configures the name that will be used to bind the queue to JNDI. This is a mandatory element
and the queue can contain multiple of these to bind the same queue to different names.

The selector element defines what JMS message selector the predefined queue will have. Only messages that match
the selector will be added to the queue. This is an optional element with a default of null when omitted.

The durable element specifies whether the queue will be persisted. This again is optional and defaults to true if
omitted.

Secondly a queue can be predefined at a core level in the jbm-configuration.xml file. The following is an ex-
ample.

<queues>
<queue name="jms.queue.selectorQueue">

<address>jms.queue.selectorQueue</address>
<filter string="color='red'"/>

<durable>true</durable>
</queue>

</queues>

This is very similar to the JMS configuration, with 3 real differences which are.

1. The name attribute of queue is the actual name used for the queue with no naming convention as in JMS.

2. The address element defines what address is used for routing messages.

78

3. There is no entry element.

4. The filter uses the Core filter syntax (described in Chapter 12), not the JMS selector syntax.

24.2. Using the API

Queues can also be created using the core API or the management API.

For the core API, queues can be created via the org.jboss.messaging.core.client.ClientSession interface.
There are multiple createQueue methods that support setting all of the previously mentioned attributes. There is
one extra attribute that can be set via this API which is temporary. setting this to true means that the queue will be
deleted once the session is disconnected.

Take a look at Chapter 29 for a description of the management API for creating queues.

24.3. Configuring Queues Via Address Settings

There are some attributes that are defined against a queue rather than a specific queue. Here an example of an ad-

dress-setting entry that would be found in the jbm-configuration.xml file.

<address-settings>
<address-setting match="jms.queue.exampleQueue">

<dead-letter-address>jms.queue.deadLetterQueue</dead-letter-address>
<max-delivery-attempts>3</max-delivery-attempts>
<redelivery-delay>5000</redelivery-delay>
<expiry-address>jms.queue.expiryQueue</expiry-address>
<last-value-queue>true</last-value-queue>
<distribution-policy-class>org.jboss.messaging.core.server.impl.RoundRobinDistributor</distribution-policy-class>
<max-size-bytes>100000</max-size-bytes>
<page-size-bytes>20000</page-size-bytes>
<redistribution-delay>0</redistribution-delay>

</address-setting>
</address-settings>

These are explained fully throughout the user manual, howvere here is a breif description with a link to the appro-
priate chapter if available.

max-delivery-attempts defines how many time a cancelled message can be redelivered before sending to the
dead-letter-address. A full explanation can be found here.

redelivery-delay defines how long to wait before attempting redelivery of a cancelled message. see here.

expiry-address defines where to send a message that has expired. see here.

last-value-queue defines whether a queue only uses last values or not. see here.

distribution-policy-class define the class to use for distribution of messages by a queue to consumers. By de-
fault this is org.jboss.messaging.core.server.impl.RoundRobinDistributor.

max-size-bytes and page-size-bytes are used to set paging on an address. This is explained here.

redistribution-delay defines how long to wait when the last consumer is closed on a queue before redistributing

Queue Attributes

79

any messages. see here.

Queue Attributes

80

25
Scheduled Messages

Scheduled messages differ from normal messages in that they won't be delivered until a specified time in the fu-
ture, at the earliest.

To do this, a special property is set on the message before sending it.

25.1. Scheduled Delivery Property

The property name used to identify a scheduled message is "_JBM_SCHED_DELIVERY" (or the constant MessageIm-
pl.HDR_SCHEDULED_DELIVERY_TIME).

The specified value must be a long corresponding to the time the message must be delivered (in milliseconds). An
example of sending a scheduled message using the JMS API is as follows.

TextMessage message =
session.createTextMessage("This is a scheduled message message which will be delivered
in 5 sec.");

message.setLongProperty("_JBM_SCHED_DELIVERY", System.currentTimeMillis() + 5000);
producer.send(message);

...

// message will not be received immediately but 5 seconds later
TextMessage messageReceived = (TextMessage) consumer.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the core message before
sending.

25.2. Example

See Section 9.1.40 for an example which shows how scheduled messages can be used with JMS.

81

26
Last-Value Queues

Last-Value queues are special queues which discard any messages when a newer message with the same value for a
well-defined Last-Value property is put in the queue. In other words, a Last-Value queue only retains the last value.

A typical example for Last-Value queue is for stock prices, where you are only interested by the latest value for a
particular stock.

26.1. Configuring Last-Value Queues

Last-value queues are defined in the address-setting configuration:

<address-setting match="jms.queue.lastValueQueue">
<last-value-queue>true</last-value-queue>

</address-setting>

By default, last-value-queue is false. Address wildcards can be used to configure Last-Value queues for a set of
addresses (see Chapter 11).

26.2. Using Last-Value Property

The property name used to identify the last value is "_JBM_LVQ_NAME" (or the constant MessageIm-

pl.HDR_LAST_VALUE_NAME from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-Value queue, only
the latest message will be kept in the queue:

// send 1st message with Last-Value property set to STOCK_NAME
TextMessage message =

session.createTextMessage("1st message with Last-Value property set");
message.setStringProperty("_JBM_LVQ_NAME", "STOCK_NAME");
producer.send(message);

// send 2nd message with Last-Value property set to STOCK_NAME
message =

session.createTextMessage("2nd message with Last-Value property set");
message.setStringProperty("_JBM_LVQ_NAME", "STOCK_NAME");
producer.send(message);

...

// only the 2nd message will be received: it is the latest with
// the Last-Value property set

82

TextMessage messageReceived = (TextMessage)messageConsumer.receive(5000);
System.out.format("Received message: %s\n", messageReceived.getText());

26.3. Example

See Section 9.1.22 for an example which shows how last value queues are configured and used with JMS.

Last-Value Queues

83

27
Message Grouping

Message groups are sets of messages that has the following characteristics:

• Messages in a message group share the same group id, i.e. they have same group identifier property (JMSXGrou-
pID for JMS, _JBM_GROUP_ID for JBoss Messaging Core API).

• Messages in a message group are always consumed by the same consumer, even if there are many consumers
on a queue. They pin all messages with the same group id to the same consumer. If that consumer closes anoth-
er consumer is chosen and will receive all messages with the same group id.

27.1. Using Core API

The property name used to identify the message group is "_JBM_GROUP_ID"" (or the constant MessageIm-

pl.HDR_GROUP_ID). Alternatively, you can set autogroup to true on the SessionFactory which will pick a random
unique id.

27.2. Using JMS

The property name used to identify the message group is JMSXGroupID.

Within the same group, messages can also set a JMSXGroupSeq int property (starting at 1).

// send 2 messages in the same group to ensure the same
// consumer will receive both
Message message = ...
message.setStringProperty("JMSXGroupID", "Group-0");
message.setIntProperty("JMSXGroupSeq", 1);
producer.send(message);

message = ...
message.setStringProperty("JMSXGroupID", "Group-0");
message.setIntProperty("JMSXGroupSeq", 2);
producer.send(message);

Alternatively, you can set autogroup to true on the JBossConnectonFactory which will pick a random unique id.
This can also be set in the jbm-jms.xml file like this:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>

<entry name="ConnectionFactory"/>

84

</entries>
<autogroup>true</autogroup>

</connection-factory>

27.3. Example

See Section 9.1.29 for an example which shows how message groups are configured and used with JMS.

Message Grouping

85

28
Pre-Acknowledge Mode

JMS specifies 3 acknowledgement modes:

• AUTO_ACKNOWLEDGE

• CLIENT_ACKNOWLEDGE

• DUPS_OK_ACKNOWLEDGE

The acknowledgement modes all involve sending acknowledgements from the client to the server. However, in the
case where you can afford to lose messages in event of failure, it would make sense to acknowledge the message on
the server before delivering it to the client.

The disadvantage of acknowledging on the server before delivery is that the message will be lost if the system
crashes after acknowledging the message on the server but before it is delivered to the client. In that case, the mes-
sage is lost and will not be recovered when the system restart.

Depending on your messaging case, pre-acknowledgement mode can avoid extra network traffic and CPU at the
cost of coping with message loss.

An example of a use case for pre-acknowledgement is for stock price update messages. With these messages it
might be reasonable to lose a message in event of crash, since the next price update message will arrive soon, over-
riding the previous price.

28.1. Using PRE_ACKNOWLEDGE

This can be configured in the jbm-jms.xml file on the connection factory like this:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>
<pre-acknowledge>true</pre-acknowledge>

</connection-factory>

Alternatively use pre-acknowledgement mode using the JMS API, create a JMS Session with the JBossSes-

sion.PRE_ACKNOWLEDGE constant.

// messages will be acknowledge on the server *before* being delivered to the client
Session session = connection.createSession(false, JBossSession.PRE_ACKNOWLEDGE);

86

Or you can set pre-acknowledge directly on the JBossConnectionFactory instance using the setter method.

To use pre-acknowledgement mode using the core API you can set it directly on the ClientSessionFactory in-
stance using the setter method.

28.2. Example

See Section 9.1.35 for an example which shows how to use pre-acknowledgement mode with with JMS.

Pre-Acknowledge Mode

87

29
Management

JBoss Messaging has an extensive management API that allows a user to modify a server configuration, create new
resources (e.g. JMS queues and topics), inspect these resources (e.g. how many messages are currently held in a
queue) and interact with it (e.g. to remove messages from a queue). All the operations allows a client to manage
JBoss Messaging. It also allows clients to subscribe to management notifications.

There are 3 ways to manage JBoss Messaging:

• Using JMX -- JMX is the standard way to manage Java applications

• Using the core API -- management operations are sent to JBoss Messaging server using core messages

• Using the JMS API -- management operations are sent to JBoss Messaging server using JMS messages

Although there are 3 different ways to manage JBoss Messaging each API supports the same functionality. If it is
possible to manage a resource using JMX it is also possible to achieve the same result using Core messages or JMS
messages.

This choice depends on your requirements, your application settings and your environment to decide which way
suits you best.

29.1. The Management API

Regardless of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for this type of resource.

JBoss Messaging exposes its managed resources in 2 packages:

• Core resources are located in the org.jboss.messaging.core.management package

• JMS resources are located in the org.jboss.messaging.jms.server.management package

The way to invoke a management operations depends whether JMX, core messages, or JMS messages are used.

Note

A few management operations requires a filter parameter to chose which messages are involved by the
operation. Passing null or an empty string means that the management operation will be performed on all
messages.

88

29.1.1. Core Management API

JBoss Messaging defines a core management API to manage core resources. For full details of the API please con-
sult the javadoc. In summary:

29.1.1.1. Core Server Management

• Creating, deploying and destroying queues

Core queues can be created or destroyed using the management operations createQueue() or deployQueue()
or destroyQueue())on the MessagingServerControl (with the ObjectName
org.jboss.messaging:module=Core,type=Server or the resource name core.server)

createQueue will fail if the queue already exists while deployQueue will do nothing.

• Listing and closing remote connections

Client's remote addresses can be retrieved using listRemoteAddresses(). It is also possible to close the con-
nections associated with a remote address using the closeConnectionsForAddress() method.

Alternatively, connection IDs can be listed using listConnectionIDs() and all the sessions for a given connec-
tion ID can be listed using listSessions().

• Transaction heuristic operations

In case of a server crash, when the server restarts, it it possible that some transaction requires manual interven-
tion. The listPreparedTransactions() method lists the transactions which are in the prepared states (the
transactions are represented as opaque Base64 Strings.) To commit or rollback a given prepared transaction, the
commitPreparedTransaction() or rollbackPreparedTransaction() method can be used to resolve heuristic
transactions.

• Enabling and resetting Message counters

Message counters can be enabled or disabled using the enableMessageCounters() or disableMessageCoun-

ters() method. To reset message counters, it is possible to invoke resetAllMessageCounters() and re-

setAllMessageCounterHistories() methods.

• Retrieving the server configuration and attributes

The MessagingServerControl exposes JBoss Messaging server configuration through all its attributes (e.g.
getVersion() method to retrieve the server's version, etc.)

29.1.1.2. Core Address Management

Core addresses can be managed using the AddressControl class (with the ObjectName
org.jboss.messaging:module=Core,type=Address,name="<the address name>" or the resource name
core.address.<the address name>).

• Modifying roles and permissions for an address

Management

89

You can add or remove roles associated to a queue using the addRole() or. removeRole() methods. You can
list all the roles associated to the queue with the getRoles() method

29.1.1.3. Core Queue Management

The bulk of the core management API deals with core queues. The QueueControl class defines the Core queue
management operations (with the ObjectName org.jboss.messaging:module=Core,type=Queue,address="<the

bound address>",name="<the queue name>" or the resource name core.queue.<the queue name>).

Most of the management operations on queues take either a single message ID (e.g. to remove a single message) or
a filter (e.g. to expire all messages with a given property.)

• Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expireMessages() method. If an expiry address is defined,
messages will be be sent to it, otherwise they are discarded. The queue's expiry address can be set with the set-

ExpiryAddress() method.

Messages can also be sent to a dead letter address with the sendMessagesToDeadLetterAddress() method. It
returns the number of messages which are sent to the dead letter address. If a dead letter address is not defined,
message are removed from the queue and discarded. The queue's dead letter address can be set with the set-

DeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages() method.

• Listing and removing messages

Messages can be listed from a queue by using the listMessages() method which returns an array of Map, one
Map for each message.

Messages can also be removed from the queue by using the removeMessages() method which returns a
boolean for the single message ID variant or the number of removed messages for the filter variant.

• Counting messages

The number of messages in a queue is returned by the getMessageCount() method. Alternatively, the count-

Messages() will return the number of messages in the queue which match a given filter

• Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns a
boolean for the single message ID variant or the number of updated messages for the filter variant.

• Message counters

Message counters can be listed for a queue with the listMessageCounter() and listMessageCounterHis-

tory() methods (see Section 29.7). The message counters can also be reset for a single queue using the reset-

MessageCounter() method.

• Retrieving the queue attributes

Management

90

The QueueControl exposes Core queue settings through its attributes (e.g. getFilter() to retrieve the queue's
filter if it was created with one, isDurable() to know wether the queue is durable or not, etc.)

29.1.1.4. Other Core Resources Management

JBoss Messaging allows to start and stop its remote resources (acceptors, diverts, bridges, etc.) so that a server can
be taken off line for a given period of time without stopping it completely (e.g. if other management operations
must be performed such as resolving heuristic transactions). These resources are:

• Acceptors

They can be started or stopped using the start() or. stop() method on the AcceptorControl class (with the
ObjectName org.jboss.messaging:module=Core,type=Acceptor,name="<the acceptor name>" or the re-
source name core.acceptor.<the address name>). The acceptors parameters can be retrieved using the Ac-

ceptorControl attributes (see Section 14.1)

• Diverts

They can be started or stopped using the start() or stop() method on the DivertControl class (with the Ob-
jectName org.jboss.messaging:module=Core,type=Divert,name=<the divert name> or the resource name
core.divert.<the divert name>). Diverts parameters can be retrieved using the DivertControl attributes
(see Chapter 33)

• Bridges

They can be started or stopped using the start() (resp. stop()) method on the BridgeControl class (with the
ObjectName org.jboss.messaging:module=Core,type=Bridge,name="<the bridge name>" or the resource
name core.bridge.<the bridge name>). Bridges parameters can be retrieved using the BridgeControl attrib-
utes (see Chapter 34)

• Broadcast groups

They can be started or stopped using the start() or stop() method on the BroadcastGroupControl class (with
the ObjectName org.jboss.messaging:module=Core,type=BroadcastGroup,name="<the broadcast group

name>" or the resource name core.broadcastgroup.<the broadcast group name>). Broadcast groups para-
meters can be retrieved using the BroadcastGroupControl attributes (see Section 36.2.1)

• Discovery groups

They can be started or stopped using the start() or stop() method on the DiscoveryGroupControl class (with
the ObjectName org.jboss.messaging:module=Core,type=DiscoveryGroup,name="<the discovery group

name>" or the resource name core.discovery.<the discovery group name>). Discovery groups parameters
can be retrieved using the DiscoveryGroupControl attributes (see Section 36.2.2)

• Cluster connections

They can be started or stopped using the start() or stop() method on the ClusterConnectionControl class
(with the ObjectName org.jboss.messaging:module=Core,type=ClusterConnection,name="<the cluster

connection name>" or the resource name core.clusterconnection.<the cluster connection name>).

Management

91

Cluster connections parameters can be retrieved using the ClusterConnectionControl attributes (see Sec-
tion 36.3.1)

29.1.2. JMS Management API

JBoss Messaging defines a JMS Management API to manage JMS administrated objects (i.e. JMS queues, topics
and connection factories).

29.1.2.1. JMS Server Management

JMS Resources (connection factories and destinations) can be created using the JMSServerControl class (with the
ObjectName org.jboss.messaging:module=JMS,type=Server or the resource name jms.server).

• Creating/destroying connection factories

JMS connection factories can be created or destroyed using the createConnectionFactory() methods or des-
troyConnectionFactory() methods. These connection factories are bound to JNDI so that JMS clients can
look them up. If a graphical console is used to create the connection factories, the transport parameters are spe-
cified in the text fied input as a comma-separated list of key=value (e.g. key1=10, key2="value",

key3=false). If there are multiple transports defined, you need to enclose the key/value pairs between curly
braces. For example {key=10}, {key=20}. In that case, the first key will be associated to the first transport con-
figuration and the second key will be associated to the second transport configuration (see Chapter 14 for a list
of the transport parameters)

• Creating/destroying queues

JMS queues can be created or destroyed using the createQueue() methods or destroyQueue() methods. These
queues are bound to JNDI so that JMS clients can look them up

• Creating/destroying topics

JMS topics can be created or destroyed using the createTopic() or destroyTopic() methods. These topics are
bound to JNDI so that JMS clients can look them up

• Listing and closing remote connections

JMS Clients remote addresses can be retrieved using listRemoteAddresses(). It is also possible to close the
connections associated with a remote address using the closeConnectionsForAddress() method.

Alternatively, connection IDs can be listed using listConnectionIDs() and all the sessions for a given connec-
tion ID can be listed using listSessions().

29.1.2.2. JMS ConnectionFactory Management

JMS Connection Factories can be managed using the ConnectionFactoryControl class (with the ObjectName
org.jboss.messaging:module=JMS,type=ConnectionFactory,name="<the connection factory name>" or the
resource name jms.connectionfactory.<the connection factory name>).

• Retrieving connection factory attributes

Management

92

The ConnectionFactoryControl exposes JMS ConnectionFactory configuration through its attributes (e.g.
getConsumerWindowSize() to retrieve the consumer window size for flow control, isBlockOnNonPersistent-
Send() to know wether the producers created from the connection factory will block or not when sending non-
persistent messages, etc.)

29.1.2.3. JMS Queue Management

JMS queues can be managed using the JMSQueueControl class (with the ObjectName
org.jboss.messaging:module=JMS,type=Queue,name="<the queue name>" or the resource name
jms.queue.<the queue name>).

The management operations on a JMS queue are very similar to the operations on a core queue.

• Expiring, sending to a dead letter address and moving messages

Messages can be expired from a queue by using the expireMessages() method. If an expiry address is defined,
messages will be be sent to it, otherwise they are discarded. The queue's expiry address can be set with the set-

ExpiryAddress() method.

Messages can also be sent to a dead letter address with the sendMessagesToDeadLetterAddress() method. It
returns the number of messages which are sent to the dead letter address. If a dead letter address is not defined,
message are removed from the queue and discarded. The queue's dead letter address can be set with the set-

DeadLetterAddress() method.

Messages can also be moved from a queue to another queue by using the moveMessages() method.

• Listing and removing messages

Messages can be listed from a queue by using the listMessages() method which returns an array of Map, one
Map for each message.

Messages can also be removed from the queue by using the removeMessages() method which returns a
boolean for the single message ID variant or the number of removed messages for the filter variant.

• Counting messages

The number of messages in a queue is returned by the getMessageCount() method. Alternatively, the count-

Messages() will return the number of messages in the queue which match a given filter

• Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns a
boolean for the single message ID variant or the number of updated messages for the filter variant.

• Message counters

Message counters can be listed for a queue with the listMessageCounter() and listMessageCounterHis-

tory() methods (see Section 29.7)

• Retrieving the queue attributes

Management

93

The JMSQueueControl exposes JMS queue settings through its attributes (e.g. isTemporary() to know wether
the queue is temporary or not, isDurable() to know wether the queue is durable or not, etc.)

29.1.2.4. JMS Topic Management

JMS Topics can be managed using the TopicControl class (with the ObjectName
org.jboss.messaging:module=JMS,type=Topic,name="<the topic name>" or the resource name
jms.topic.<the topic name>).

• Listing subscriptions and messages

JMS topics subscriptions can be listed using the listAllSubscriptions(), listDurableSubscriptions(),
listNonDurableSubscriptions() methods. These methods return arrays of Object representing the subscrip-
tions information (subscription name, client ID, durability, message count, etc.). It is also possible to list the
JMS messages for a given subscription with the listMessagesForSubscription() method.

• Dropping subscriptions

Durable subscriptions can be dropped from the topic using the dropDurableSubscription() method.

• Counting subscriptions messages

The countMessagesForSubscription() method can be used to know the number of messages held for a given
subscription (with an optional message selector to know the number of messages matching the selector)

29.2. Using Management Via JMX

JBoss Messaging can be managed using JMX
[http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/].

The management API is exposed by JBoss Messaging using MBeans interfaces. JBoss Messaging registers its re-
sources with the domain org.jboss.messaging.

For example, the ObjectName to manage a JMS Queue exampleQueue is:

org.jboss.messaging:module=JMS,type=Queue,name="exampleQueue"

and the MBean is:

org.jboss.messaging.jms.server.management.JMSQueueControl

The MBean's ObjectName are built using the helper class org.jboss.messaging.core.management.ObjectNames.
You can also use jconsole to find the ObjectName of the MBeans you want to manage.

Managing JBoss Messaging using JMX is identical to management of any Java Applications using JMX. It can be

Management

94

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

done by reflection or by creating proxies of the MBeans.

29.2.1. Configuring JMX

By default, JMX is enabled to manage JBoss Messaging. It can be disabled by setting jmx-management-enabled to
false in jbm-configuration.xml:

<!-- false to disable JMX management for JBoss Messaging -->
<jmx-management-enabled>false</jmx-management-enabled>

If JMX is enabled, JBoss Messaging can be managed locally using jconsole. Remote connections to JMX are not
enabled by default for security reasons. Please refer to Java Management guide
[http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote] to configure the server for remote man-
agement (system properties must be set in run.sh or run.bat scripts).

29.2.1.1. MBeanServer configuration

When JBoss Messaging is run in standalone, it uses the Java Virtual Machine's Platform MBeanServer to register
its MBeans. This is configured in JBoss Microcontainer Beans file (see Section 4.7):

<!-- MBeanServer -->
<bean name="MBeanServer" class="javax.management.MBeanServer">

<constructor factoryClass="java.lang.management.ManagementFactory"
factoryMethod="getPlatformMBeanServer" />

</bean>

When it is integrated in JBoss AS 5, it uses the Application Server's own MBean Server so that it can be managed
using AS 5's jmx-console:

<!-- MBeanServer -->
<bean name="MBeanServer" class="javax.management.MBeanServer">

<constructor factoryClass="org.jboss.mx.util.MBeanServerLocator"
factoryMethod="locateJBoss" />

</bean>

29.2.2. Example

See Section 9.1.20 for an example which shows how to use a remote connection to JMX and MBean proxies to
manage JBoss Messaging.

29.3. Using Management Via Core API

The core management API in JBoss Messaging is called by sending Core messages to a special address, the man-
agement address.

Management messages are regular Core messages with well-known properties that the server needs to understand

Management

95

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

to interact with the management API:

• The name of the managed resource

• The name of the management operation

• The parameters of the management operation

When such a management message is sent to the management address, JBoss Messaging server will handle it, ex-
tract the information, invoke the operation on the managed resources and send a management reply to the manage-
ment message's reply-to address (specified by ClientMessageImpl.REPLYTO_HEADER_NAME).

A ClientConsumer can be used to consume the management reply and retrieve the result of the operation (if any)
stored in the reply's body. For portability, results are returned as a JSON [http://json.org] String rather than Java
Serialization (the org.jboss.messaging.core.client.management.impl.ManagementHelper can be used to con-
vert the JSON string to Java objects).

These steps can be simplified to make it easier to invoke management operations using Core messages:

1. Create a ClientRequestor to send messages to the management address and receive replies

2. Create a ClientMessage

3. Use the helper class org.jboss.messaging.core.client.management.impl.ManagementHelper to fill the
message with the management properties

4. Send the message using the ClientRequestor

5. Use the helper class org.jboss.messaging.core.client.management.impl.ManagementHelper to retrieve
the operation result from the management reply

For example, to find out the number of messages in the core queue exampleQueue:

ClientSession session = ...
ClientRequestor requestor = new ClientRequestor(session, "jbm.management");
ClientMessage message = session.createClientMessage(false);
ManagementHelper.putAttribute(message, "core.queue.exampleQueue", "messageCount");
ClientMessage reply = requestor.request(m);
int count = (Integer) ManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

Management operation name and parameters must conform to the Java interfaces defined in the management pack-
ages.

Names of the resources are built using the helper class org.jboss.messaging.core.management.ResourceNames

and are straightforward (core.queue.exampleQueue for the Core Queue exampleQueue, jms.topic.exampleTopic
for the JMS Topic exampleTopic, etc.).

29.3.1. Configuring Core Management

Management

96

http://json.org

The management address to send management messages is configured in jbm-configuration.xml:

<management-address>jbm.management</management-address>

By default, the address is jbm.management.

The management address requires a special user permission manage to be able to receive and handle management
messages. This is also configured in jbm-configuration.xml:

<!-- users with the admin role will be allowed to manage -->
<!-- JBoss Messaging using management messages -->
<security-setting match="jbm.management">

<permission type="manage" roles="admin" />
</security-setting>

29.4. Using Management Via JMS

Using JMS messages to manage JBoss Messaging is very similar to using core API.

An important difference is that JMS requires a JMS queue to send the messages to (instead of an address for the
core API).

The management queue is a special queue and needs to be instantiated directly by the client:

Queue managementQueue = new JBossQueue("jbm.management", "jbm.management");

All the other steps are the same than for the Core API but they use JMS API instead:

1. create a QueueRequestor to send messages to the management address and receive replies

2. create a Message

3. use the helper class org.jboss.messaging.jms.server.management.impl.JMSManagementHelper to fill the
message with the management properties

4. send the message using the QueueRequestor

5. use the helper class org.jboss.messaging.jms.server.management.impl.JMSManagementHelper to retrieve
the operation result from the management reply

For example, to know the number of messages in the JMS queue exampleQueue:

Queue managementQueue = new JBossQueue("jbm.management", "jbm.management");

QueueSession session = ...
QueueRequestor requestor = new QueueRequestor(session, managementQueue);

Management

97

connection.start();
Message message = session.createMessage();
JMSManagementHelper.putAttribute(message, "jms.queue.exampleQueue", "managementQueueessageCount");
Message reply = requestor.request(message);
int count = (Integer)JMSManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

29.4.1. Configuring JMS Management

Whether JMS or the core API is used for management, the configuration steps are the same (see Section 29.3.1).

29.4.2. Example

See Section 9.1.24 for an example which shows how to use JMS messages to manage JBoss Messaging server.

29.5. Management Cluster Credentials

JBoss Messaging allows replication of a live server to a backup server. This impacts management as resources cre-
ated on the live server (e.g. a core address) must also be created on the backup server. Otherwise, when failover oc-
curs, the backup server will not be able to handle messages sent to this address since its resources will have been
created on the live server only and not on the backup.

JBoss Messaging replicates management operations regardless of the management API used (JMX, Core mes-
sages, JMS messages). Any management operation invoked on a live server will also be invoked on its backup
server to ensure a proper replication of resources and state. For example, you only need to manage the live server:
if a queue is created on the live server, JBoss Messaging will ensure that the same resource will also be created on
the backup server.

If core or JMS messages are used to invoke management operations, replication is handled automatically by JBoss
Messaging.

To allow this management replication with JMX, JBoss Messaging defines management cluster credentials: this
special user/password must be shared by all nodes. To configure it, change the value in jbm-configuration.xml:

<management-cluster-user>JBM.MANAGEMENT.ADMIN.USER</management-cluster-user>
<management-cluster-password>CHANGE ME!!</management-cluster-password>

It is strongly suggested to change these values from their default. If they are not changed from the default, JBoss
Messaging will detect this and pester you with a warning on every start-up.

JBoss Messaging internally uses Core messages to replicate management operations between the live and backup
server when JMX is used. By default, there is a timeout of 5s (5000ms) to send a management request from the live
server to the backup server and wait for a reply. If a reply is not received before the timeout is hit, JBoss Messaging
considers the replication has failed. This timeout can be configured in jbm-configuration.xml:

<management-request-timeout>5000</management-request-timeout>

Management

98

29.6. Management Notifications

JBoss Messaging emits notifications to inform listeners of potentially interesting events (creation of new resources,
security violation, etc.).

These notifications can be received by 3 different ways:

• JMX notifications

• Core messages

• JMS messages

29.6.1. JMX Notifications

If JMX is enabled (see Section 29.2.1), JMX notifications can be received by subscribing to 2 MBeans:

• org.jboss.messaging:module=Core,type=Server for notifications on Core resources

• org.jboss.messaging:module=JMS,type=Server for notifications on JMS resources

29.6.2. Core Messages Notifications

JBoss Messaging defines a special management notification address. Core queues can be bound to this address so
that clients will receive management notifications as Core messages

A Core client which wants to receive management notifications must create a core queue bound to the management
notification address. It can then receive the notifications from its queue.

Notifications messages are regular core messages with additional properties corresponding to the notification (its
type, when it occurred, the resources which were concerned, etc.).

Since notifications are regular core messages, it is possible to use message selectors to filter out notifications and
receives only a subset of all the notifications emitted by the server.

29.6.2.1. Configuring The Core Management Notification Address

the management notification address to receive management notifications is configured in
jbm-configuration.xml:

<management-notification-address>jbm.notifications</management-notification-address>

By default, the address is jbm.notifications.

Management

99

29.6.3. JMS Messages Notifications

JBoss Messaging's notifications can also be received using JMS messages.

It is similar to receiving notifications using Core API but an important difference is that JMS requires a JMS Des-
tination to receive the messages (preferably a Topic):

Topic notificationsTopic = new JBossTopic("jbm.notifications", "jbm.notifications");

Once the notification topic is created, you can receive messages from it or set a MessageListener:

Topic notificationsTopic = new JBossTopic("jbm.notifications", "jbm.notifications");

Session session = ...
MessageConsumer notificationConsumer = session.createConsumer(notificationsTopic);

notificationConsumer.setMessageListener(new MessageListener()
{

public void onMessage(Message notif)
{

System.out.println("------------------------");
System.out.println("Received notification:");
try
{

Enumeration propertyNames = notif.getPropertyNames();
while (propertyNames.hasMoreElements())
{

String propertyName = (String)propertyNames.nextElement();
System.out.format(" %s: %s\n", propertyName, notif.getObjectProperty(propertyName));

}
}
catch (JMSException e)
{
}
System.out.println("------------------------");

}
});

29.6.4. Example

See Section 9.1.25 for an example which shows how to use a JMS MessageListener to receive management noti-
fications from JBoss Messaging server.

29.7. Message Counters

Message counters can be used to obtain information on queues over time as JBoss Messaging keeps a history on
queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be possible to query
the number of messages in a queue at regular interval. However, this would not be enough to know if the queue is
used: the number of messages can remain constant because nobody is sending or receiving messages from the
queue or because there are as many messages sent to the queue than messages consumed from it. The number of

Management

100

messages in the queue remains the same in both cases but its use is widely different.

Message counters gives additional information about the queues:

• count

The total number of messages added to the queue since the server was started

• countDelta

the number of messages added to the queue since the last message counter update

• depth

The current number of messages in the queue

• depthDelta

The overall number of messages added/removed from the queue since the last message counter update. For ex-
ample, if depthDelta is equal to -10 this means that overall 10 messages have been removed from the queue
(e.g. 2 messages were added and 12 were removed)

• lastAddTimestamp

The timestamp of the last time a message was added to the queue

• udpateTimestamp

The timestamp of the last message counter update

29.7.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory (the metrics are kept
in memory) and CPU (the queues are sampled at regular interval).

To enable message counters, you can set it to true in jbm-configuration.xml:

<message-counter-enabled>true</message-counter-enabled>

Message counters keeps a history of the queue metrics (10 days by default) and samples all the queues at regular
interval (10 seconds by default). If message counters are enabled, these values should be configured to suit your
messaging use case in jbm-configuration.xml:

<!-- keep history for a week -->
<message-counter-max-day-history>7</message-counter-max-day-history>
<!-- sample the queues every minute (60000ms) -->
<message-counter-sample-period>60000</message-counter-sample-period>

Message counters can be retrieved using the Management API. For example, to retrieve message counters on a

Management

101

JMS Queue using JMX:

// retrieve a connection to JBoss Messaging's MBeanServer
MBeanServerConnection mbsc = ...
JMSQueueControlMBean queueControl = (JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,

on,
JMSQueueControl.class,
false);

// message counters are retrieved as a JSON String
String counters = queueControl.listMessageCounter();
// use the MessageCounterInfo helper class to manipulate message counters more easily
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",

counter.getDepth(),
counter.getDepthDelta());

29.7.2. Example

See Section 9.1.27 for an example which shows how to use message counters to retrieve information on a JMS
Queue.

Management

102

30
Security

This chapter describes how security works with JBoss Messaging and how you can configure it. To disable security
completely simply set the security-enabled property to false in the jbm-configuration.xml file.

For performance reasons security is cached and invalidated every so long. To change this period set the property
security-invalidation-interval, which is in milliseconds. The default is 10000 ms.

30.1. Role based security for addresses

JBoss Messaging contains a flexible role-based security model for applying security to queues, based on their ad-
dresses.

As explained in Chapter 6, JBoss Messaging core consists mainly of sets of queues bound to addresses. A message
is sent to an address and the server looks up the set of queues that are bound to that address, the server then routes
the message to those set of queues.

JBoss Messaging allows sets of permissions to be defined against the queues based on their address. An exact
match on the address can be used or a wildcard match can be used using the wildcard characters '#' and '*'.

Seven different permissions can be given to the set of queues which match the address. Those permissions are:

• createDurableQueue. This permission allows the user to create a durable queue under matching addresses.

• deleteDurableQueue. This permission allows the user to delete a durable queue under matching addresses.

• createTempQueue. This permission allows the user to create a temporary queue under matching addresses.

• deleteTempQueue. This permission allows the user to delete a temporarry queue under matching addresses.

• send. This permission allows the user to send a message to matching addresses.

• consume. This permission allows the user to consume a message from a queue bound to matching addresses.

• manage. This permission allows the user to invoke management operations by sending management messages to
the management address.

For each permission, a list of roles who are granted that permission is specified. If the user has any of those roles,
he/she will be granted that permission for that set of addresses.

Let's take a simple example, here's a security block from jbm-configuration.xml or jbm-queues.xml file:

<security-setting match="globalqueues.europe.#">

103

<permission type="createDurableQueue" roles="admin"/>
<permission type="deleteDurableQueue" roles="admin"/>
<permission type="createTempQueue" roles="admin, guest, europe-users"/>
<permission type="deleteTempQueue" roles="admin, guest, europe-users"/>
<permission type="send" roles="admin, europe-users"/>
<permission type="consume" roles="admin, europe-users"/>

</security-setting>

The '#' character signifies "any sequence of words". Words are delimited by the '.' character. For a full description
of the wildcard syntax please see Chapter 11. The above security block applies to any address that starts with the
string "globalqueues.europe.":

Only users who have the admin role can create or delete durable queues bound to an address that starts with the
string "globalqueues.europe."

Only users who have the admin role can create or delete durable queues bound to an address that starts with the
string "globalqueues.europe."

Any users with the roles admin, guest, or europe-users can create or delete temporary queues bound to an address
that starts with the string "globalqueues.europe."

Any users with the roles admin or europe-users can send messages to these addresses or consume messages from
queues bound to an address that starts with the string "globalqueues.europe."

The mapping between a user and what roles they have is handled by the security manager. JBoss Messaging ships
with a user manager that reads user credentials from a file on disk, and can also plug into JAAS or JBoss Applica-
tion Server security.

For more information on configuring the security manager, please see Section 30.4.

There can be zero or more security-setting elements in each xml file. Where more than one match applies to a
set of addresses the more specific match takes precedence.

Let's look at an example of that, here's another security-setting block:

<security-setting match="globalqueues.europe.orders.#">
<permission type="send" roles="europe-users"/>
<permission type="consume" roles="europe-users"/>

</security-setting>

In this security-setting block the match 'globalqueues.europe.orders.#' is more specific than the previous match
'globalqueues.europe.#'. So any addresses which match 'globalqueues.europe.orders.#' will take their security set-
tings only from the latter security-setting block.

Note that settings are not inherited from the former block. All the settings will be taken from the more specific
matching block, so for the address 'globalqueues.europe.orders.plastics' the only permissions that exist are send and
consume for the role europe-users. The permissions createDurableQueue, deleteDurableQueue,
createTempQueue, deleteTempQueue are not inherited from the other security-setting block.

By not inheriting permissions, it allows you to effectively deny permissions in more specific security-setting blocks
by simply not specifying them. Otherwise it would not be possible to deny permissions in sub-groups of addresses.

Security

104

30.2. Secure Sockets Layer (SSL) Transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g. via bridges) over
an untrusted network then JBoss Messaging allows that traffic to be encrypted using the Secure Sockets Layer
(SSL) transport.

For more information on configuring the SSL transport, please see Chapter 14.

30.3. Basic user credentials

JBoss Messaging ships with a security manager implementation that reads user credentials, i.e. user names, pass-
words and role information from an xml file on the classpath called jbm-users.xml. This is the default security
manager.

If you wish to use this security manager, then users, passwords and roles can easily be added into this file.

Let's take a look at an example file:

<configuration xmlns="urn:jboss:messaging"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:jboss:messaging ../schemas/jbm-users.xsd ">

<defaultuser name="guest" password="guest">
<role name="guest"/>

</defaultuser>

<user name="tim" password="marmite">
<role name="admin"/>

</user>

<user name="andy" password="doner_kebab">
<role name="admin"/>
<role name="guest"/>

</user>

<user name="jeff" password="camembert">
<role name="europe-users"/>
<role name="guest"/>

</user>

</configuration>

The first thing to note is the element default-user. This defines what user will be assumed when the client does
not specify a username/password when creating a session. In this case they will be the user guest and have the role
also called guest. Multiple roles can be specified for a default user.

We then have three more users, the user tim has the role admin. The user andy has the roles admin and guest, and
the user jeff has the roles europe-users and guest.

30.4. Changing the security manager

Security

105

If you do not want to use the default security manager then you can specify a different one by editing the jbm-

jboss-beans.xml file and changing the class for the JBMSecurityManager bean.

Let's take a look at a snippet from the default beans file:

<bean name="JBMSecurityManager"
class="org.jboss.messaging.core.security.impl.JBMSecurityManagerImpl">

<start ignored="true"/>
<stop ignored="true"/>

</bean>

The class org.jboss.messaging.core.security.impl.JBMSecurityManagerImpl is the default security manager
that reads used by the standalone server.

JBoss Messaging ships with two other security manager implementations you can use off-the-shelf; one a JAAS se-
curity manager and another for integrating with JBoss Application Sever security, alternatively you could write
your own implementation by implementing the org.jboss.messaging.core.security.SecurityManager inter-
face, and specifying the classname of your implementation in the jbm-jboss-beans.xml file.

These two implementations are discussed in the next two sections.

30.5. JAAS Security Manager

JAAS stands for 'Java Authentication and Authorization Service' and is a standard part of the Java platform. It
provides a common API for security authentication and authorization, allowing you to plugin your pre-built imple-
mentations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure you need to specify the
security manager as a JAASSecurityManager in the beans file. Here's an example:

<bean name="JBMSecurityManager"
class="org.jboss.messaging.integration.security.JAASSecurityManager">

<start ignored="true"/>
<stop ignored="true"/>

<property name="ConfigurationName">org.jboss.jms.example.ExampleLoginModule</property>
<property name="Configuration">

<inject bean="ExampleConfiguration"/>
</property>
<property name="CallbackHandler">

<inject bean="ExampleCallbackHandler"/>
</property>

</bean>

Note that you need to feed the JAAS security manager with three properties:

• ConfigurationName: the name of the LoginModule implementation that JAAS must use

• Configuration: the Configuration implementation used by JAAS

Security

106

• CallbackHandler: the CallbackHandler implementation to use if user interaction are required

30.5.1. Example

See Section 9.1.19 for an example which shows how JBoss Messaging can be configured to use JAAS.

30.6. JBoss AS Security Manager

The JBoss AS security manager is used when running JBoss Messaging inside the JBoss Application server. This
allows tight integration with the JBoss Application Server's security model.

The class name of this security manager is
org.jboss.messaging.integration.security.JBossASSecurityManager

Take a look at one of the default jbm-jboss-beans.xml files for JBoss Application Server that are bundled in the
distribution for an example of how this is configured.

30.7. Changing the Management Password for Clustering

In order for cluster connections to work correctly, each node in the cluster must register for management notifica-
tions from other nodes. To do this they must perform these actions as a user with a role that has admin permissions
on the management addresses.

This password should always be changed from its default after installation. Please see Chapter 29 for instructions
on how to do this.

Security

107

31
Application Server Integration and Java EE

JBoss Messaging can be easily installed in JBoss Application Server 5.1 or JBoss Enterprise Application Platform
5.1 or later. For details on installing JBoss Messaging in the JBoss Application Server refer to quick-start guide.

JBoss Messaging can also be integrated with any other JEE compliant application server by using the JBoss Mes-
saging JCA adapter. A JCA Adapter basically controls the incoming of messages to Message Driven Beans and the
outgoing of messages from other J2EE components.

This section explains the basics behind configuring the different JEE components in the AS.

31.1. Configuring Message Driven Beans

The delivery of messages to an MDB using JBoss Messaging is configured on the JCA Adapter via a configuration
file ra.xml which can be found under in the jms-ra.rar archive of directory. By default this is configured to con-
sume messages using an InVM connector from the instance of JBoss Messaging running within the application
server. A full list of what is configurable is found later in this chapter.

All MDB's however need to have the destination type and the destination configured. The following example
shows how this can be done via annotations.

@MessageDriven(name = "MDBExample",
activationConfig =

{
@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue")

})
public class MDBExample implements MessageListener
{

public void onMessage(Message message)...
}

In this example you can see that the MDB will consume messages from a queue that is mapped into JNDI with the
binding queue/testQueue. This queue must be preconfigured in the usual way using the JBoss Messaging config-
uration files.

31.1.1. Using Container Managed Transactions

When an MDB is using Container Managed Transactions, the delivery of the message is done within the scope of
an XA transaction. The commit or rollback of this transaction is controlled by the container itself. If the transaction
is rolled back then the JBoss Message delivery semantics will kick in (by default this is to try and redeliver the
message up to 10 times before sending to a DLQ). Using annotations this would be configured as follows:

@MessageDriven(name = "MDB_CMP_TxRequiredExample",

108

activationConfig =
{

@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue")

})
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDB_CMP_TxRequiredExample implements MessageListener
{

public void onMessage(Message message)...
}

The TransactionManagement annotation tells the container to treat this MDB to use Container Managed Persist-
ence. The TransactionAttribute annotation tells the container that an XA transaction is required for this MDB.
Note that the only other valid value for this is TransactionAttributeType.NOT_SUPPORTED which tells the contain-
er that this MDB does not support XA transactions and one should not be created.

It is also possible to inform the container that it must rollback the transaction by calling setRollbackOnly on the
MessageDrivenContext. The code for this would look something like:

@Resource
MessageDrivenContext ctx;

public void onMessage(Message message)
{

try
{

//something here fails
}
catch (Exception e)
{

ctx.setRollbackOnly();
}

}

If you don't want the over head of an xa transaction being created every time but you would still like the message
delivered within a transaction (i.e. you are only using a JMS resource) then you can configure the MDB to use a
local transaction. This would be configured as such:

@MessageDriven(name = "MDB_CMP_TxLocalExample",
activationConfig =

{
@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue"),
@ActivationConfigProperty(propertyName = "useLocalTx", propertyValue = "true")

})
@TransactionManagement(value = TransactionManagementType.CONTAINER)
@TransactionAttribute(value = TransactionAttributeType.NOT_SUPPORTED)
public class MDB_CMP_TxLocalExample implements MessageListener
{

public void onMessage(Message message)...
}

31.1.2. Using Bean Managed Transactions

Message driven beans can also be configured to use Bean Managed Transactions. In this case a User Transaction is
created. This would be configured as follows:

Application Server Integration and Java EE

109

@MessageDriven(name = "MDB_BMPExample",
activationConfig =

{
@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue"),
@ActivationConfigProperty(propertyName = "acknowledgeMode", propertyValue = "Dups-ok-acknowledge")

})
@TransactionManagement(value= TransactionManagementType.BEAN)
public class MDB_BMPExample implements MessageListener
{

public void onMessage(Message message)
}

When using Bean Managed transactions the message will be acknowledged outside the scope of the user transac-
tion and use the acknowledge mode specified by the user with the acknowledgeMode property. There are only 2 ac-
ceptable values for this Auto-acknowledge and Dups-ok-acknowledge.Not that because the message delivery is
outside the scope of the transaction a failure within the MDB will not cause the message to be redelivered.

A user would control the lifecycle of the transaction something like the following:

@Resource
MessageDrivenContext ctx;

public void onMessage(Message message)
{

UserTransaction tx;
try
{

TextMessage textMessage = (TextMessage)message;

String text = textMessage.getText();

UserTransaction tx = ctx.getUserTransaction();

tx.begin();
//do some stuff within the transaction
tx.xommit();

}
catch (Exception e)
{

tx.rollback();
}

}

31.1.3. Using Message Selectors with MDB's

It is also possible to use MDB's with message selectors. To do this simple define your message selector as follows:

@MessageDriven(name = "MDBMessageSelectorExample",
activationConfig =

{
@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue"),
@ActivationConfigProperty(propertyName = "messageSelector", propertyValue = "color = 'RED'")

})
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDBMessageSelectorExample implements MessageListener
{

public void onMessage(Message message)....

Application Server Integration and Java EE

110

}

31.2. Sending Messages from within J2EE components

The JCA adapter can also be used for sending messages. The Connection Factory to use is configured by default in
the jms-ds.xml file and is mapped to java:/JmsXA. Using this from within a J2EE component will mean that the
sending of the message will be done as part of the XA transaction being used by the component. This means that if
the sending of the message fails the overall transaction would rollback and the message redelivered. Heres an ex-
ample of this from within an MDB:

@MessageDriven(name = "MDBMessageSendTxExample",
activationConfig =

{
@ActivationConfigProperty(propertyName = "destinationType", propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination", propertyValue = "queue/testQueue")

})
@TransactionManagement(value= TransactionManagementType.CONTAINER)
@TransactionAttribute(value= TransactionAttributeType.REQUIRED)
public class MDBMessageSendTxExample implements MessageListener
{

@Resource(mappedName = "java:JmsXA")
ConnectionFactory connectionFactory;

@Resource(mappedName = "queue/replyQueue")
Queue replyQueue;

public void onMessage(Message message)
{

Connection conn = null;
try
{

//Step 9. We know the client is sending a text message so we cast
TextMessage textMessage = (TextMessage)message;

//Step 10. get the text from the message.
String text = textMessage.getText();

System.out.println("message " + text);

conn = connectionFactory.createConnection();

Session sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);

MessageProducer producer = sess.createProducer(replyQueue);

producer.send(sess.createTextMessage("this is a reply"));

}
catch (Exception e)
{

e.printStackTrace();
}
finally
{

if(conn != null)
{

try
{

conn.close();
}
catch (JMSException e)

Application Server Integration and Java EE

111

{
}

}
}

}
}

31.3. Configuring the JCA Adapter

The Java Connector Architecture (JCA) Adapter is what allows JBM to be integrated with JEE components such as
MDB's and EJB's. It configures how components such as MDB's consume messages from the JBM server and also
how components such as EJB's or Servlet's can send messages.

The JBM JCA adapter is deployed via the jms-ra.rar archive. The configuration of the Adapter is found in this
archive under META-INF/ra.xml.

The configuration will look something like the following:

<resourceadapter>
<resourceadapter-class>org.jboss.messaging.ra.JBMResourceAdapter</resourceadapter-class>
<config-property>

<description>The transport type</description>
<config-property-name>ConnectorClassName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>org.jboss.messaging.core.remoting.impl.invm.InVMConnectorF
actory</config-property-value>

</config-property>
<config-property>

<description>The transport configuration. These values must be in the form of key=val;key=val;</description>
<config-property-name>ConnectionParameters</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>jbm.remoting.invm.serverid=0</config-property-value>

</config-property>

<outbound-resourceadapter>
<connection-definition>

<managedconnectionfactory-class>org.jboss.messaging.ra.JBMManagedConnection
Factory</managedconnectionfactory-class>

<config-property>
<description>The default session type</description>
<config-property-name>SessionDefaultType</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>javax.jms.Queue</config-property-value>

</config-property>
<config-property>

<description>Try to obtain a lock within specified number of seconds; less
than or equal to 0 disable this functionality</description>
<config-property-name>UseTryLock</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>
<config-property-value>0</config-property-value>

</config-property>

<connectionfactory-interface>org.jboss.messaging.ra.JBMConnectionFactory
</connectionfactory-interface>
<connectionfactory-impl-class>org.jboss.messaging.ra.JBMConnectionFactoryImpl
</connectionfactory-impl-class>
<connection-interface>javax.jms.Session</connection-interface>
<connection-impl-class>org.jboss.messaging.ra.JBMSession
</connection-impl-class>

Application Server Integration and Java EE

112

</connection-definition>
<transaction-support>XATransaction</transaction-support>
<authentication-mechanism>

<authentication-mechanism-type>BasicPassword
</authentication-mechanism-type>
<credential-interface>javax.resource.spi.security.PasswordCredential
</credential-interface>

</authentication-mechanism>
<reauthentication-support>false</reauthentication-support>

</outbound-resourceadapter>

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>javax.jms.MessageListener</messagelistener-type>
<activationspec>

<activationspec-class>org.jboss.messaging.ra.inflow.JBMActivationSpec
</activationspec-class>
<required-config-property>

<config-property-name>destination</config-property-name>
</required-config-property>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

</resourceadapter>

There are 3 main parts to this configuration.

1. A set of global properties for the Adapter

2. The configuration for the outbound part of the adapter. This is used for creating JMS resources within EE
components.

3. The configuration of the inbound part of the adapter. This is used for controlling the consumption of messages
via MDB's.

31.3.1. Adapter Global properties

The first element you see is resourceadapter-class which should be left unchanged. This is the JBM resource ad-
apter class.

After that there is a list of configuration properties. This will be where most of the configuration is done. The first 2
configure the transport used by the adapter and the rest configure the connection itself.

The following table explains what each property is for.

Table 31.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name see
Chapter 14 for info on available
connectors

Application Server Integration and Java EE

113

Property Name Property Type Property Description

ConnectionParameters String The transport configuration. These
values must be in the form of
key=val;key=val; and will be spe-
cific to the connector used

useLocalTx boolean True will enable local transaction
optimisation.

UseXA boolean Whether XA should be used

UserName String The user name to use when making
a connection

Password String The password to use when making
a connection

BackUpTransportType String The back up transport to use on
failure.

TransportConfiguration String The back up transport configura-
tion

DiscoveryGroupAddress String The discovery group address to use
to autodetect a server

DiscoveryGroupPort integer The port to use for discovery

DiscoveryRefreshTimeout long The timeout, in milli seconds, to
refresh.

DiscoveryInitialWaitTimeout long The initial time to wait for discov-
ery.

LoadBalancingPolicyClassName String The load balancing policy class to
use.

PingPeriod long The period, in milliseconds, to
ping the server for failure.

ConnectionTTL long The time to live for the connection.

CallTimeout long the call timeout, in milli seconds,
for each packet sent.

DupsOKBatchSize integer The batch size of message acks to
use if Dups ok is used.

continued..

TransactionBatchSize integer The batch size to use for sending
messages within a transaction

ConsumerWindowSize integer The window size for the con-

Application Server Integration and Java EE

114

sumers internal buffer.

ConsumerMaxRate integer The max rate a consumer can re-
ceive.

ProducerWindowSize integer The window size for the sending of
messages.

ProducerMaxRate integer The max rate a producer can send
messages.

MinLargeMessageSize integer The size a message can be, in
bytes, before it is sent as a multi
part large message.

BlockOnAcknowledge boolean If true then block on acknowledge
of messages.

BlockOnNonPersistentSend boolean If true then block when sending
non persistent messages

BlockOnPersistentSend boolean If true then block when sending
persistent messages

AutoGroup boolean If true then auto group messages

MaxConnections integer The max number of connections.

PreAcknowledge boolean Whether to pre acknowledge mes-
sages before sending to consumer

RetryInterval long How long to wait , in milli
seconds, before retrying a failed
connection

RetryIntervalMultiplier double Used for calculating the retry inter-
val

FailoverOnServerShutdown boolean If true client will reconnect to an-
other server if available

ClientID String The client ID of the connection

31.3.2. Adapter Outbound configuration

The outbound configuration should remain unchanged as they define connection factories that are used by Java EE
components. These Connection Factories can be defined inside a configuration file that matches the name
*-ds.xml. You'll find a default jms-ds.xml configuration under the messaging.sar directory in the Jboss AS de-
ployment. The connection factories defined in the config file inherit their properties from the main ra.xml config-
uration but can also be overridden, the following example show how to define one.

Please note that this configuration only applies to install the JBM resource adapter in the JBoss Application Server.
If you are using another JEE application server please refer to your application servers documentation for how to

Application Server Integration and Java EE

115

do this.

<tx-connection-factory>
<jndi-name>RemoteJmsXA</jndi-name>
<xa-transaction/>
<rar-name>jms-ra.rar</rar-name>
<connection-definition>org.jboss.messaging.ra.JBMConnectionFactory

</connection-definition>
<config-property name="SessionDefaultType" type="String">javax.jms.Topic
</config-property>
<config-property name="ConnectorClassName" type="String">

org.jboss.messaging.integration.transports.netty.NettyConnectorFactory
</config-property>
<config-property name="ConnectionParameters" type="String">

jbm.remoting.netty.port=5445</config-property>
<max-pool-size>20</max-pool-size>

</tx-connection-factory>

In this example the connection factory will be bound to JNDI with the name RemoteJmsXA and can be looked up in
the usual way using JNDI or defined within the EJB or MDB as such:

@Resource(mappedName="java:RemoteJmsXA")
private ConnectionFactory connectionFactory;

The config-property elements are what over rides those in the ra.xml config. Any of the elements pertaining to
the connection factory can be over ridden here.

31.3.3. Adapter Inbound configuration

The inbound configuration should again remain unchanged. This controls what forwards messages onto MDB's. It
is possible to override properties on the MDB by adding an activation configuration to the MDB itself. This could
be used to configure the MDB to consume from a different server. The next section demonstrates over riding the
configuration.

31.4. High Availability JNDI (HA-JNDI)

If you are using JNDI to look-up JMS queues, topics and connection factories from a cluster of servers, it is likely
you will want to use HA-JNDI so that your JNDI look-ups will continue to work if one or more of the servers in the
cluster fail.

HA-JNDI is a JBoss Application Server service which allows you to use JNDI from clients without them having to
know the exact JNDI connection details of every server in the cluster. This service is only available if using a
cluster of JBoss Application Server instances.

To use it use the following properties when connecting to JNDI.

Hashtable<String, String> jndiParameters = new Hashtable<String, String>();
jndiParameters.put("java.naming.factory.initial",

"org.jnp.interfaces.NamingContextFactory");
jndiParameters.put("java.naming.factory.url.pkgs=",

"org.jboss.naming:org.jnp.interfaces");

initialContext = new InitialContext(jndiParameters);

Application Server Integration and Java EE

116

For more information on using HA-JNDI see the JBoss Application Server clustering documentation
[http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.
html]

31.5. The JMS Bridge

JBoss Messaging includes a fully functional message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them to a target queue or
topic, typically on a different server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably send-
ing messages from one cluster to another, for instance across a WAN, and where the connection may be unreliable.

A bridge is deployed inside a JBoss AS instance. The instance can be the same instance as either the source or tar-
get server. Or could be on a third, separate JBoss AS instance.

The bridge can also be used to bridge messages from other non JBoss Messaging JMS servers, as long as they are
JMS 1.1 compliant.

Note

Don't confuse a JMS bridge with a core bridge. A JMS bridge can be used to bridge any two JMS 1.1 com-
pliant JMS providers and uses the JMS API. A core bridge (described in Chapter 34) is used to bridge any
two JBoss Messaging instances and uses the core API. Always use a core bridge if you can in preference to
a JMS bridge. The core bridge will typically provide better performance than a JMS bridge. Also the core
bridge can provide once and only once delivery guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.g. due to network
failure, the bridge will retry connecting to the source and/or target until they come back online. When it comes
back online it will resume operation as normal.

The bridge can be configured with an optional JMS selector, so it will only consume messages matching that JMS
selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be configured to
consume using a non durable or durable subscription

The bridge is deployed by the JBoss Micro Container via a beans configuration file. This would typically be de-
ployed inside the JBoss Application Server and the following example shows an example of a beans file that
bridges 2 destinations which are actually on the same server.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<bean name="JMSBridge" class="org.jboss.messaging.jms.bridge.impl.JMSBridgeImpl">
<!-- JBoss Messaging must be started before the bridge -->
<depends>MessagingServer</depends>
<constructor>

<!-- Source ConnectionFactory Factory -->
<parameter>

Application Server Integration and Java EE

117

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html

<inject bean="SourceCFF"/>
</parameter>
<!-- Target ConnectionFactory Factory -->
<parameter>

<inject bean="TargetCFF"/>
</parameter>
<!-- Source DestinationFactory -->
<parameter>

<inject bean="SourceDestinationFactory"/>
</parameter>
<!-- Target DestinationFactory -->
<parameter>

<inject bean="TargetDestinationFactory"/>
</parameter>
<!-- Source User Name (no username here) -->
<parameter><null /></parameter>
<!-- Source Password (no password here)-->
<parameter><null /></parameter>
<!-- Target User Name (no username here)-->
<parameter><null /></parameter>
<!-- Target Password (no password here)-->
<parameter><null /></parameter>
<!-- Selector -->
<parameter><null /></parameter>
<!-- Failure Retry Interval (in ms) -->
<parameter>5000</parameter>
<!-- Max Retries -->
<parameter>10</parameter>
<!-- Quality Of Service -->
<parameter>ONCE_AND_ONLY_ONCE</parameter>
<!-- Max Batch Size -->
<parameter>1</parameter>
<!-- Max Batch Time (-1 means infinite) -->
<parameter>-1</parameter>
<!-- Subscription name (no subscription name here)-->
<parameter><null /></parameter>
<!-- Client ID (no client ID here)-->
<parameter><null /></parameter>
<!-- Add MessageID In Header -->
<parameter>true</parameter>

</constructor>
<property name="transactionManager">

<inject bean="RealTransactionManager"/>
</property>

</bean>

<!-- SourceCFF describes the ConnectionFactory used to connect to the
source destination -->

<bean name="SourceCFF"
class="org.jboss.messaging.jms.bridge.impl.JNDIConnectionFactoryFactory">
<constructor>

<parameter>
<inject bean="JNDI" />

</parameter>
<parameter>/ConnectionFactory</parameter>

</constructor>
</bean>

<!-- TargetCFF describes the ConnectionFactory used to connect to the
target destination -->
<bean name="TargetCFF"

class="org.jboss.messaging.jms.bridge.impl.JNDIConnectionFactoryFactory">
<constructor>

<parameter>
<inject bean="JNDI" />

</parameter>

Application Server Integration and Java EE

118

<parameter>/ConnectionFactory</parameter>
</constructor>

</bean>

<!-- SourceDestinationFactory describes the Destination used as the source -->
<bean name="SourceDestinationFactory"

class="org.jboss.messaging.jms.bridge.impl.JNDIDestinationFactory">
<constructor>

<parameter>
<inject bean="JNDI" />

</parameter>
<parameter>/queue/source</parameter>

</constructor>
</bean>

<!-- TargetDestinationFactory describes the Destination used as the target -->
<bean name="TargetDestinationFactory"

class="org.jboss.messaging.jms.bridge.impl.JNDIDestinationFactory">
<constructor>

<parameter>
<inject bean="JNDI" />

</parameter>
<parameter>/queue/target</parameter>

</constructor>
</bean>

<!-- JNDI is a Hashtable containing the JNDI properties required -->
<!-- to connect to the sources and targets JMS resrouces -->

<bean name="JNDI" class="java.util.Hashtable">
<constructor class="java.util.Map">

<map class="java.util.Hashtable" keyClass="String"
valueClass="String">

<entry>
<key>java.naming.factory.initial</key>
<value>org.jnp.interfaces.NamingContextFactory</value>

</entry>
<entry>

<key>java.naming.provider.url</key>
<value>jnp://localhost:1099</value>

</entry>
<entry>

<key>java.naming.factory.url.pkgs</key>
<value>org.jboss.naming:org.jnp.interfaces"</value>

</entry>
</map>

</constructor>
</bean>

</deployment>

31.5.1. JMS Bridge Parameters

The main bean deployed is the JMSBridge bean. The bean is configurable by the parameters passed to its construct-
or.

Note

To let a parameter be unspecified (for example, if the authentication is anonymous or no message selector
is provided), use <null /> for the unspecified parameter value.

Application Server Integration and Java EE

119

• Source Connection Factory Factory

This injects the SourceCFF bean (also defined in the beans file). This bean is used to create the source Connec-

tionFactory

• Target Connection Factory Factory

This injects the TargetCFF bean (also defined in the beans file). This bean is used to create the target Connec-
tionFactory

• Source Destination Factory Factory

This injects the SourceDestinationFactory bean (also defined in the beans file). This bean is used to create
the source Destination

• Target Destination Factory Factory

This injects the TargetDestinationFactory bean (also defined in the beans file). This bean is used to create
the target Destination

• Source User Name

this parameter is the username for creating the source connection

• Source Password

this parameter is the parameter for creating the source connection

• Target User Name

this parameter is the username for creating the target connection

• Target Password

this parameter is the password for creating the target connection

• Selector

This represents a JMS selector expression used for consuming messages from the source destination. Only mes-
sages that match the selector expression will be bridged from the source to the target destination

Note
Ut is always more efficient to apply selectors on source topic subscriptions to source queue consumers

The selector expression must follow the JMS selector syntax
[http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html]

• Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the source or target
servers when the bridge has detected they have failed

Application Server Integration and Java EE

120

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

• Max Retries

This represents the number of times to attempt to recreate connections to the source or target servers when the
bridge has detected they have failed. The bridge will give up after trying this number of times. -1 represents 'try
forever'

• Quality Of Service

This parameter represents the desired quality of service mode

Possible values are:

• AT_MOST_ONCE

• DUPLICATES_OK

• ONCE_AND_ONLY_ONCE

See Section 31.5.4 for a explanation of these modes.

• Max Batch Size

This represents the maximum number of messages to consume from the source destination before sending them
in a batch to the target destination. Its value must >= 1

• Max Batch Time

This represents the maximum number of milliseconds to wait before sending a batch to target, even if the num-
ber of messages consumed has not reached MaxBatchSize. Its value must be -1 to represent 'wait forever', or >=
1 to specify an actual time

• Subscription Name

If the source destination represents a topic, and you want to consume from the topic using a durable subscrip-
tion then this parameter represents the durable subscription name

• Client ID

If the source destination represents a topic, and you want to consume from the topic using a durable subscrip-
tion then this attribute represents the the JMS client ID to use when creating/looking up the durable subscription

• Add MessageID In Header

If true, then the original message's message ID will be appended in the message sent to the destination in the
header JBM_BRIDGE_MSG_ID_LIST. If the message is bridged more than once, each message ID will be appen-
ded. This enables a distributed request-response pattern to be used

Note

when you receive the message you can send back a response using the correlation id of the first message id,
so when the original sender gets it back it will be able to correlate it.

Application Server Integration and Java EE

121

31.5.2. Source and Target Connection Factories

The source and target connection factory factories are used to create the connection factory used to create the con-
nection for the source or target server.

The configuration example above uses the default implementation provided by JBoss Messaging that looks up the
connection factory using JNDI. For other Application Servers or JMS providers a new implementation may have to
be provided. This can easily be done by implementing the interface
org.jboss.messaging.jms.bridge.ConnectionFactoryFactory.

31.5.3. Source and Target Destination Factories

Again, similarly, these are used to create or lookup up the destinations.

In the configuration example above, we have used the default provided by JBoss Messaging that looks up the des-
tination using JNDI.

A new implementation can be provided by implementing
org.jboss.messaging.jms.bridge.DestinationFactory interface.

31.5.4. Quality Of Service

The quality of service modes used by the bridge are described here in more detail.

31.5.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The messages are consumed
from the source and acknowledged before sending to the destination. Therefore there is a possibility that if failure
occurs between removing them from the source and them arriving at the destination they could be lost. Hence de-
livery will occur at most once.

This mode is available for both persistent and non persistent messages.

31.5.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after they have been suc-
cessfully sent to the destination. Therefore there is a possibility that if failure occurs after sending to the destination
but before acknowledging them, they could be sent again when the system recovers. I.e. the destination might re-
ceive duplicates after a failure.

This mode is available for both persistent and non persistent messages.

31.5.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once. (Sometimes this
mode is known as "exactly once"). If both the source and the destination are on the same JBoss Messaging server
instance then this can be achieved by sending and acknowledging the messages in the same local transaction. If the
source and destination are on different servers this is achieved by enlisting the sending and consuming sessions in a
JTA transaction. The JTA transaction is controlled by JBoss Transactions JTA * implementation which is a fully

Application Server Integration and Java EE

122

recovering transaction manager, thus providing a very high degree of durability. If JTA is required then both sup-
plied connection factories need to be XAConnectionFactory implementations. This is likely to be the slowest mode
since it requires extra persistence for the transaction logging.

This mode is only available for persistent messages.

Note

For a specific application it may possible to provide once and only once semantics without using the
ONCE_AND_ONLY_ONCE QoS level. This can be done by using the DUPLICATES_OK mode and then
checking for duplicates at the destination and discarding them. Some JMS servers provide automatic du-
plicate message detection functionality, or this may be possible to implement on the application level by
maintaining a cache of received message ids on disk and comparing received messages to them. The cache
would only be valid for a certain period of time so this approach is not as watertight as using
ONCE_AND_ONLY_ONCE but may be a good choice depending on your specific application.

31.5.4.4. Example

Please see Section 9.3.4 which shows how to configure and use a JMS Bridge to send messages to the source des-
tination and consume them from the target destination.

31.6. XA Recovery

XA recovery deals with system or application failures to ensure that of a transaction are applied consistently to all
resources affected by the transaction, even if any of the application processes or the machine hosting them crash or
lose network connectivity. For more information on XA Recovery,please refer to JBoss Transactions
[http://www.jboss.org/community/wiki/JBossTransactions].

When JBoss Messaging is integrated with JBoss AS, it can take advantage of JBoss Transactions to provide recov-
ery of messaging resources. If messages are involved in a XA transaction, in the event of a server crash, the recov-
ery manager will ensure that the transactions are recovered and the messages will either be committed or rolled
back (depending on the transaction outcome) when the server is restarted.

31.6.1. XA Recovery Configuration

To enable JBoss Messagings XA Recovery, the Recovery Manager must be configured to connect to JBoss Mes-
saging to recover its resources. The following property must be added to the jta section of conf/

jbossts-properties.xml of JBoss AS profiles:

<properties depends="arjuna" name="jta">
...

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
value="org.jboss.messaging.jms.server.recovery.MessagingXAResourceRecovery;[connection configuration]"/>

</properties>

The [connection configuration] contains all the information required to connect to JBoss Messaging node un-

Application Server Integration and Java EE

123

http://www.jboss.org/community/wiki/JBossTransactions

der the form [connector factory class name],[user name], [password], [connector parameters].

• [connector factory class name] corresponds to the name of the ConnectorFactory used to connect to
JBoss Messaging. Values can be org.jboss.messaging.core.remoting.impl.invm.InVMConnectorFactory

or org.jboss.messaging.integration.transports.netty.NettyConnectorFactory

• [user name] is the user name to create a client session. It is optional

• [password] is the password to create a client session. It is mandatory only if the user name is specified

• [connector parameters] is a list of comma-separated key=value pair which are passed to the connector fact-
ory (see Chapter 14 for a list of the transport parameters).

Note

JBoss Messaging must have a valid acceptor which corresponds to the connector specified in conf/

jbossts-properties.xml.

31.6.1.1. Configuration Settings

If JBoss Messaging is configured with a default in-vm acceptor:

<acceptor name="in-vm">
<factory-class>org.jboss.messaging.core.remoting.impl.invm.InVMAcceptorFactory</factory-class>

</acceptor>

the corresponding configuration in conf/jbossts-properties.xml is:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
value="org.jboss.messaging.jms.server.recovery.MessagingXAResourceRecovery;org.jboss.messaging.core.remoting.impl.invm.InVMConnectorFactory"/>

If it is now configured with a netty acceptor on a non-default port:

<acceptor name="netty">
<factory-class>org.jboss.messaging.integration.transports.netty.NettyAcceptorFactory</factory-class>
<param key="jbm.remoting.netty.port" value="8888" type="Integer"/>

</acceptor>

the corresponding configuration in conf/jbossts-properties.xml is:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
value="org.jboss.messaging.jms.server.recovery.MessagingXAResourceRecovery;org.jboss.messaging.integration.transports.netty.NettyConnectorFactory, , , jbm.remoting.netty.port=8888"/>

Note

Note the additional commas to skip the user and password before connector parameters

Application Server Integration and Java EE

124

If the recovery must use admin, adminpass, the configuration would have been:

<property name="com.arjuna.ats.jta.recovery.XAResourceRecovery.JBMESSAGING1"
value="org.jboss.messaging.jms.server.recovery.MessagingXAResourceRecovery;org.jboss.messaging.integration.transports.netty.NettyConnectorFactory, admin, adminpass, jbm.remoting.netty.port=8888"/>

Configuring JBoss Messaging with an invm acceptor and configuring the Recovery Manager with an invm con-
nector is the recommended way to enable XA Recovery.

31.6.2. Example

See Section 9.3.8 which shows how to configure XA Recovery and recover messages after a server crash.

Application Server Integration and Java EE

125

32
Client Reconnection

JBoss Messaging clients can be configured to automatically reconnect to the server in the event that a failure is de-
tected in the connection between the client and the server. If the client successfully reconnects, and the server still
has a record of the clients session (i.e. the server was not restarted) then the client will transparently re-attach to the
session and it will be able to resume as if nothing had happened.

Client reconnection is also used internally by components such as core bridges to allow them to reconnect to their
target servers.

Client reconnection is configured using the following parameters:

• retry-interval. This optional parameter determines the period in milliseconds between subsequent reconnec-
tion attempts, if the connection to the target server has failed. The default value is 2000 milliseconds.

• retry-interval-multiplier. This optional parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let's take an example:

If we set retry-interval to 1000 ms and we set retry-interval-multiplier to 2.0, then, if the first recon-
nect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between subsequent reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

• reconnect-attempts. This optional parameter determines the total number of reconnect attempts the bridge
will make before giving up and shutting down. A value of -1 signifies an unlimited number of attempts. The
default value is -1.

If you're using JMS, and you're using the JMS Service on the server to load your JMS connection factory instances
directly into JNDI, then you can specify these parameters in the xml configuration in jbm-jms.xml, for example:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>

<entry name="ConnectionFactory"/>
<entry name="XAConnectionFactory"/>

</entries>
<retry-interval>1000</retry-interval>
<retry-interval-multiplier>1.5</retry-interval-multiplier>
<reconnect-attempts>1000</reconnect-attempts>
</connection-factory>

126

If you're using JMS, but instantiating your JMS connection factory directly, you can specify the parameters using
the appropriate setter methods on the JBossConnectionFactory immediately after creating it.

If you're using the core API and instantiating the ClientSessionFactory instance directly you can also specify the
parameters using the appropriate setter methods on the ClientSessionFactory immediately after creating it.

If your client does manage to reconnect but the session is no longer available on the server, for instance if the serv-
er has been restarted or it has timed out, then the client won't be able to re-attach, and any ExceptionListener or
FailureListener instances registered on the connection or session will be called.

Client Reconnection

127

33
Diverting and Splitting Message Flows

JBoss Messaging allows you to configure objects called diverts with some simple server configuration.

Diverts allow you to transparently divert messages routed to one address to some other address, without making
any changes to any client application logic.

Diverts can be exclusive, meaning that that the message is diverted to the new address, and does not go to the old
address at all, or they can be non-exclusive which means the message continues to go the old address, and a copy of
it is also sent to the new address. Non-exclusive diverts can therefore be used for splitting message flows, e.g. there
may be a requirement to monitor every order sent to an order queue.

Diverts can also be configured to have an optional message filter. If specified then only messages that match the
filter will be diverted.

Diverts can also be configured to apply a Transformer. If specified, all diverted messages will have the opportunity
of being transformed by the Transformer.

A divert will only divert a message to an address on the same server, however, if you want to divert to an address
on a different server, a common pattern would be to divert to a local store-and-forward queue, then set up a bridge
which consumes from that queue and forwards to an address on a different server.

Diverts are therefore a very sophisticated concept, which when combined with bridges can be used to create inter-
esting and complex routings. The set of diverts on a server can be thought of as a type of routing table for mes-
sages. Combining diverts with bridges allows you to create a distributed network of reliable routing connections
between multiple geographically distributed servers, creating your global messaging mesh.

Diverts are defined as xml in the jbm-configuration.xml file. There can be zero or more diverts in the file.

Please see Section 9.1.13 for a full working example showing you how to configure and use diverts.

Let's take a look at some divert examples:

33.1. Exclusive Divert

Let's take a look at an exclusive divert. An exclusive divert diverts all matching messages that are routed to the old
address to the new address. Matching messages do not get routed to the old address.

Here's some example xml configuration for an exclusive divert, it's taken from the divert example:

<divert name="prices-divert">
<address>jms.topic.priceUpdates</address>
<forwarding-address>jms.queue.priceForwarding</forwarding-address>

128

<filter string="office='New York'"/>
<transformer-class-name>

org.jboss.jms.example.AddForwardingTimeTransformer
</transformer-class-name>
<exclusive>true</exclusive>

</divert>

We define a divert called 'prices-divert' that will divert any messages sent to the address
'jms.topic.priceUpdates' (this corresponds to any messages sent to a JMS Topic called 'priceUpdates') to anoth-
er local address 'jms.queue.priceForwarding' (this corresponds to a local JMS queue called 'priceForwarding'

We also specify a message filter string so only messages with the message property office with value New York

will get diverted, all other messages will continue to be routed to the normal address. The filter string is optional, if
not specified then all messages will be considered matched.

In this example a transformer class is specified. Again this is optional, and if specified the transformer will be ex-
ecuted for each matching message. This allows you to change the messages body or properties before it is diverted.
In this example the transformer simply adds a header that records the time the divert happened.

This example is actually diverting messages to a local store and forward queue, which is configured with a bridge
which forwards the message to an address on another JBoss Messaging server. Please see the example for more de-
tails.

33.2. Non-exclusive Divert

Now we'll take a look at a non-exclusive divert. Non exclusive diverts are the same as exclusive diverts, but they
only forward a copy of the message to the new address. The original message continues to the old address

You can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same was as exclusive diverts with an optional filter and trans-
former, here's an example non-exclusive divert, again from the divert example:

<divert name="order-divert">
<address>jms.queue.orders</address>
<forwarding-address>jms.topic.spyTopic</forwarding-address>
<exclusive>false</exclusive>

</divert>

The above divert example takes a copy of every message sent to the address 'jms.queue.orders' (Which corres-
ponds to a JMS Queue called 'orders') and sends it to a local address called 'jms.topic.SpyTopic' (which corres-
ponds to a JMS Topic called 'SpyTopic').

Diverting and Splitting Message Flows

129

34
Core Bridges

The function of a bridge is to consume messages from a source queue, and forward them to a target address, typic-
ally on a different JBoss Messaging server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably send-
ing messages from one cluster to another, for instance across a WAN, and where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to network failure, the
bridge will retry connecting to the target until it comes back online. When it comes back online it will resume oper-
ation as normal.

In summary, bridges are a way to reliably connect two separate JBoss Messaging servers together. With a core
bridge both source and target servers must be JBoss Messaging servers.

Bridges can be configured provide once and only once delivery guarantees even in the event of the failure of the
source or the target server. They do this by using duplicate detection (described in Chapter 35).

Note

Although they have similar function, don't confuse core bridges with JMS bridges!

Core bridges are for linking a JBoss Messaging node with another JBoss Messaging node and do not use
the JMS API. A JMS Bridge is used for linking any two JMS 1.1 compliant JMS providers. So, a JMS
Bridge could be used for bridging to or from different JMS compliant messaging system. It's always prefer-
able to use a core bridge if you can. Core bridges use duplicate detection to provide once and only once
guarantees. To provide the same guarantee using a JMS bridge you would have to use XA which has a
higher overhead and is more complex to configure.

34.1. Configuring Bridges

Bridges are configured in jbm-configuration.xml. Let's kick off with an example (this is actually from the bridge
example):

<bridge name="my-bridge">
<queue-name>jms.queue.sausage-factory</queue-name>
<forwarding-address>jms.queue.mincing-machine</forwarding-address>
<filter-string="name='aardvark'"/>
<transformer-class-name>

org.jboss.jms.example.HatColourChangeTransformer
</transformer-class-name>
<retry-interval>1000</retry-interval>
<retry-interval-multiplier>1.0</retry-interval-multiplier>
<reconnect-attempts>-1</reconnect-attempts>

130

<failover-on-server-shutdown>false</failover-on-server-shutdown>
<use-duplicate-detection>true</use-duplicate-detection>
<connector-ref connector-name="remote-connector"

backup-connector-name="backup-remote-connector"/>
</bridge>

Please also note that in order for bridges to be deployed on a server, the clustered attribute needs to be set to true

in jbm-configuration.xml.

In the above example we have shown all the parameters its possible to configure for a bridge. In practice you might
use many of the defaults so it won't be necessary to specify them all explicitly.

Let's take a look at all the parameters in turn:

• name attribute. All bridges must have a unique name in the server.

• queue-name. This is the unique name of the local queue that the bridge consumes from, it's a mandatory para-
meter.

The queue must already exist by the time the bridge is instantiated at start-up.

Note

If you're using JMS then normally the JMS configuration jbm-jms.xml is loaded after the core configura-
tion file jbm-configuration.xml is loaded. If your bridge is consuming from a JMS queue then you'll
need to make sure the JMS queue is also deployed as a core queue in the core configuration. Take a look at
the bridge example for an example of how this is done.

• forwarding-address. This is the address on the target server that the message will be forwarded to. If a for-
warding address is not specified then the original destination of the message will be retained.

• filter-string. An optional filter string can be supplied. If specified then only messages which match the filter
expression specified in the filter string will be forwarded. The filter string follows the JBoss Messaging filter
expression syntax described in Chapter 12.

• transformer-class-name. An optional transformer-class-name can be specified. This is the name of a user-
defined class which implements the org.jboss.messaging.core.server.cluster.Transformer interface.

If this is specified then the transformer's transform() method will be invoked with the message before it is for-
warded. This gives you the opportunity to transform the message's header or body before forwarding it.

• retry-interval. This optional parameter determines the period in milliseconds between subsequent reconnec-
tion attempts, if the connection to the target server has failed. The default value is 2000milliseconds.

• retry-interval-multiplier. This optional parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let's take an example:

Core Bridges

131

If we set retry-intervalto 1000 ms and we set retry-interval-multiplier to 2.0, then, if the first recon-
nect attempt fails, we will wait 1000 ms then 2000 ms then 4000 ms between subsequent reconnection attempts.

The default value is 1.0 meaning each reconnect attempt is spaced at equal intervals.

• reconnect-attempts. This optional parameter determines the total number of reconnect attempts the bridge
will make before giving up and shutting down. A value of -1 signifies an unlimited number of attempts. The
default value is -1.

• failover-on-server-shutdown. This optional parameter determines whether the bridge will attempt to failover
onto a backup server (if specified) when the target server is cleanly shutdown rather than crashed.

The bridge connector can specify both a live and a backup server, if it specifies a backup server and this para-
meter is set to true then if the target server is cleanly shutdown the bridge connection will attempt to failover
onto its backup. If the bridge connector has no backup server configured then this parameter has no effect.

Sometimes you want a bridge configured with a live and a backup target server, but you don't want to failover
to the backup if the live server is simply taken down temporarily for maintenance, this is when this parameter
comes in handy.

The default value for this parameter is false.

• use-duplicate-detection. This optional parameter determines whether the bridge will automatically insert a
duplicate id property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from the source server.
If the connection fails or server crashes, then, when the bridge resumes it will resend unacknowledged mes-
sages. This might result in duplicate messages being sent to the target server. By enabling duplicate detection
allows these duplicates to be screened out and ignored.

This allows the bridge to provide a once and only once delivery guarantee without using heavyweight methods
such as XA (see Chapter 35 for more information).

The default value for this parameter is true.

• connector-ref. This mandatory parameter determines which connector pair the bridge will use to actually
make the connection to the target server.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as well as the server con-
nection parameters (host, port etc). For more information about what connectors are and how to configure them,
please see Chapter 14.

The connector-ref element can be configured with two attributes:

• connector-name. This references the name of a connector defined in the core configuration file jbm-

configuration.xml. The bridge will use this connector to make its connection to the target server. This at-
tribute is mandatory.

• backup-connector-name. This optional parameter also references the name of a connector defined in the
core configuration file jbm-configuration.xml. It represents the connector that the bridge will fail-over

Core Bridges

132

onto if it detects the live server connection has failed. If this is specified and failover-

on-server-shutdown is set to true then it will also attempt failover onto this connector if the live target
server is cleanly shut-down.

Core Bridges

133

35
Duplicate Message Detection

JBoss Messaging includes powerful automatic duplicate message detection, filtering out duplicate messages
without you having to code your own fiddly duplicate detection logic at the application level. This chapter will ex-
plain what duplicate detection is, how JBoss Messaging uses it and how and where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if the target server or
connection fails sometime after sending the message, but before the sender receives a response that the send (or
commit) was processed successfully then the sender cannot know for sure if the message was sent successfully to
the address.

If the target server or connection failed after the send was received and processed but before the response was sent
back then the message will have been sent to the address successfully, but if the target server or connection failed
before the send was received and finished processing then it will not have been sent to the address successfully.
From the senders point of view it's not possible to distinguish these two cases.

When the server recovers this leaves the client in a difficult situation. It knows the target server failed, but it does
not know if the last message reached its destination ok. If it decides to resend the last message, then that could res-
ult in a duplicate message being sent to the address. If each message was an order or a trade then this could result in
the order being fulfilled twice or the trade being double booked. This is clearly not a desirable situation.

Sending the message(s) in a transaction does not help out either. If the server or connection fails while the transac-
tion commit is being processed it is also indeterminate whether the transaction was successfully committed or not!

To solve these issues JBoss Messaging provides automatic duplicate messages detection for messages sent to ad-
dresses.

35.1. Using Duplicate Detection for Message Sending

Enabling duplicate message detection for sent messages is simple: you just need to set a special property on the
message to a unique value. You can create the value however you like, as long as it is unique. When the target serv-
er receives the message it will check if that property is set, if it is, then it will check in its in memory cache if it has
already received a message with that value of the header. If it has received a message with the same value before
then it will ignore the message.

Note

Using duplicate detection to move messages between nodes can give you the same once and only once de-
livery guarantees as if you were using an XA transaction to consume messages from source and send them
to the target, but with less overhead and much easier configuration than using XA.

If you're sending messages in a transaction then you don't have to set the property for every message you send in

134

that transaction, you only need to set it once in the transaction. If the server detects a duplicate message for any
message in the transaction, then it will ignore the entire transaction.

The name of the property that you set is given by the value of
org.jboss.messaging.core.message.impl.HDR_DUPLICATE_DETECTION_ID, which is _JBM_DUPL_ID

The value of the property can be of type byte[] or SimpleString if you're using the core API. If you're using JMS
it must be a String, and it's valid should be unique. An easy way of generating a unique id is by generating a
UUID.

Here's an example of setting the property using the core API:

...

ClientMessage message = session.createClientMessage(true);

SimpleString myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID, myUniqueID);

...

And here's an example using the JMS API:

...

Message jmsMessage = session.createMessage();

String myUniqueID = "This is my unique id"; // Could use a UUID for this

message.setStringProperty(HDR_DUPLICATE_DETECTION_ID.toString(), myUniqueID);

...

35.2. Configuring the Duplicate ID Cache

The server maintains caches of received values of the
org.jboss.messaging.core.message.impl.HDR_DUPLICATE_DETECTION_ID property sent to each address. Each
address has its own distinct cache.

The cache is a circular fixed size cache. If the cache has a maximum size of n elements, then the n + 1th id stored
will overwrite the 0th element in the cache.

The maximum size of the cache is configured by the parameter id-cache-size in jbm-configuration.xml, the de-
fault value is 2000 elements.

The caches can also be configured to persist to disk or not. This is configured by the parameter persist-id-cache,
also in jbm-configuration.xml. If this is set to true then each id will be persisted to permanent storage as they are
received. The default value for this parameter is true.

Note

Duplicate Message Detection

135

When choosing a size of the duplicate id cache be sure to set it to a larger enough size so if you resend
messages all the previously sent ones are in the cache not having been overwritten.

35.3. Duplicate Detection and Bridges

Core bridges can configured to automatically add a unique duplicate id value (if there isn't already one in the mes-
sage) before forwarding the message to it's target. This ensures that if the target server crashes or the connection is
interrupted and the bridge resends the message, then if it has already been received by the target server, it will be
ignored.

To configure a core bridge to add the duplicate id header, simply set the use-duplicate-detection to true when
configuring a bridge in jbm-configuration.xml.

The default value for this parameter is true.

For more information on core bridges and how to configure them, please see Chapter 34.

35.4. Duplicate Detection and Cluster Connections

Cluster connections internally use core bridges to move messages reliable between nodes of the cluster. Con-
sequently they can also be configured to insert the duplicate id header for each message they move using their in-
ternal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use-duplicate-detection to true

when configuring a cluster connection in jbm-configuration.xml.

The default value for this parameter is true.

For more information on cluster connections and how to configure them, please see Chapter 36.

35.5. Duplicate Detection and Paging

JBoss Messaging also uses duplicate detection when paging messages to storage. This is so when a message is de-
paged from storage and server failure occurs, we do not end up depaging the message more than once which could
result in duplicate delivery.

For more information on paging and how to configure it, please see Chapter 23.

Duplicate Message Detection

136

36
Clusters

36.1. Clusters Overview

JBoss Messaging clusters allow groups of JBoss Messaging servers to be grouped together in order to share mes-
sage processing load. Each active node in the cluster is an active JBoss Messaging server which manages its own
messages and handles its own connections. A server must be configured to be clustered, you will need to set the
clustered element in the jbm-configuration.xml configuration file to true, this is false by default.

The cluster is formed by each node declaring cluster connections to other nodes in the core configuration file jbm-

configuration.xml. When a node forms a cluster connection to another node, internally it creates a core bridge
(as described in Chapter 34) connection between it and the other node, this is done transparently behind the scenes
- you don't have to declare an explicit bridge for each node. These cluster connections allow messages to flow
between the nodes of the cluster to balance load.

Nodes can be connected together to form a cluster in many different topologies, we will discuss a couple of the
more common topologies later in this chapter.

We'll also discuss client side load balancing, where we can balance client connections across the nodes of the
cluster, and we'll consider message redistribution where JBoss Messaging will redistribute messages between nodes
to avoid starvation.

Another important part of clustering is server discovery where servers can broadcast their connection details so cli-
ents or other servers can connect to them with the minimum of configuration.

36.2. Server discovery

Server discovery is a mechanism by which servers can broadcast their connection settings across the network. This
is useful for two purposes:

• Discovery by messaging clients. A messaging client wants to be able to connect to the servers of the cluster
without having specific knowledge of which servers in the cluster are up at any one time. Messaging clients can
be initialised with an explicit list of the servers in a cluster, but this is not flexible or maintainable as servers are
added or removed from the cluster.

• Discovery by other servers. Servers in a cluster want to be able to create cluster connections to each other
without having prior knowledge of all the other servers in the cluster.

Server discovery uses UDP [http://en.wikipedia.org/wiki/User_Datagram_Protocol] multicast to broadcast server
connection settings. If UDP is disabled on your network you won't be able to use this, and will have to specify

137

http://en.wikipedia.org/wiki/User_Datagram_Protocol

servers explicitly when setting up a cluster or using a messaging client.

36.2.1. Broadcast Groups

A broadcast group is the means by which a server broadcasts connectors over the network. A connector defines a
way in which a client (or other server) can make connections to the server. For more information on what a con-
nector is, please see Chapter 14.

The broadcast group takes a set of connector pairs, each connector pair contains connection settings for a live and
(optional) backup server and broadcasts them on the network. It also defines the UDP address and port settings.

Broadcast groups are defined in the server configuration file jbm-configuration.xml. There can be many broad-
cast groups per JBoss Messaging server. All broadcast groups must be defined in a broadcast-groups element.

Let's take a look at an example broadcast group from jbm-configuration.xml:

<broadcast-groups>
<broadcast-group name="my-broadcast-group">

<local-bind-port>54321</local-bind-port>
<group-address>231.7.7.7</group-address>
<group-port>9876</group-port>
<broadcast-period>1000</broadcast-period>
<connector-ref connector-name="netty-connector"

backup-connector-name="backup-connector"/>
</broadcast-group>

</broadcast-groups>

Some of the broadcast group parameters are optional and you'll normally use the defaults, but we specify them all
in the above example for clarity. Let's discuss each one in turn:

• name attribute. Each broadcast group in the server must have a unique name.

• local-bind-address. This is the local bind address that the datagram socket is bound to. If you have multiple
network interfaces on your server, you would specify which one you wish to use for broadcasts by setting this
property. If this property is not specified then the socket will be bound to the wildcard address, an IP address
chosen by the kernel.

• local-bind-port. If you want to specify a local port to which the datagram socket is bound you can specify it
here. Normally you would just use the default value of -1 which signifies that an anonymous port should be
used.

• group-address. This is the multicast address to which the data will be broadcast. It is a class D IP address in
the range 224.0.0.0 to 239.255.255.255, inclusive. The address 224.0.0.0 is reserved and is not available for
use. This parameter is mandatory.

• group-port. This is the UDP port number used for broadcasting. This parameter is mandatory.

• broadcast-period. This is the period in milliseconds between consecutive broadcasts. This parameter is op-
tional, the default value is 1000 milliseconds.

• connector-ref. This specifies the connector and optional backup connector that will be broadcasted (see
Chapter 14 for more information on connectors). The connector to be broadcasted is specified by the connect-

or-name attribute, and the backup connector to be broadcasted is specified by the backup-connector attribute.

Clusters

138

The backup-connector attribute is optional.

36.2.2. Discovery Groups

While the broadcast group defines who connector information is broadcast from a server, a discovery group defines
how connector information is received from a multicast address.

A discovery group maintains a list of connector pairs - one for each broadcast by a different server. As it receives
broadcasts on the multicast group address from a particular server it updates its entry in the list for that server.

If it has not received a broadcast from a particular server for a length of time it will remove that server's entry from
its list.

Discovery groups are used in two places in JBoss Messaging:

• By cluster connections so they know what other servers in the cluster they should make connections to.

• By messaging clients so they can discovery what servers in the cluster that they can connect to.

36.2.3. Defining Discovery Groups on the Server

For cluster connections, discovery groups are defined in the server side configuration file jbm-configuration.xml.
All discovery groups must be defined inside a discovery-groups element. There can be many discovery groups
defined by JBoss Messaging server. Let's look at an example:

<discovery-groups>
<discovery-group name="my-discovery-group">

<group-address>231.7.7.7</group-address>
<group-port>9876</group-port>
<refresh-timeout>10000</refresh-timeout>

</discovery-group>
</discovery-groups>

We'll consider each parameter of the discovery group:

• name attribute. Each discovery group must have a unique name per server.

• group-address. This is the multicast ip address of the group to listen on. It should match the group-address in
the broadcast group that you wish to listen from. This parameter is mandatory.

• group-port. This is the UDP port of the multicast group. It should match the group-port in the broadcast
group that you wish to listen from. This parameter is mandatory.

• refresh-timeout. This is the period the discovery group waits after receiving the last broadcast from a particu-
lar server before removing that servers connector pair entry from its list. You would normally set this to a value
significantly higher than the broadcast-period on the broadcast group otherwise servers might intermittently
disappear from the list even though they are still broadcasting due to slight differences in timing. This paramet-
er is optional, the default value is 10000 milliseconds (10 seconds).

Clusters

139

36.2.4. Discovery Groups on the Client Side

Let's discuss how to configure a JBoss Messaging client to use discovery to discover a list of servers to which it
can connect. The way to do this differs depending on whether you're using JMS or the core API.

36.2.4.1. Configuring client discovery using JMS

If you're using JMS and you're also using the JMS Service on the server to load your JMS connection factory in-
stances into JNDI, then you can specify which discovery group to use for your JMS connection factory in the serv-
er side xml configuration jbm-jms.xml. Let's take a look at an example:

<connection-factory name="ConnectionFactory">
<discovery-group-ref discovery-group-name="my-discovery-group"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>

</connection-factory>

The element discovery-group-ref specifies the name of a discovery group defined in jbm-configuration.xml.

When this connection factory is downloaded from JNDI by a client application and JMS connections are created
from it, those connections will be load-balanced across the list of servers that the discovery group maintains by
listening on the multicast address specified in the discovery group configuration.

If you're using JMS, but you're not using JNDI to lookup a connection factory - you're instantiating the JMS con-
nection factory directly then you can specify the discovery group parameters directly when creating the JMS con-
nection factory. Here's an example:

final String groupAddress = "231.7.7.7";

final int groupPort = 9876;

ConnectionFactory jmsConnectionFactory =
new JBossConnectionFactory(groupAddress, groupPort);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();

Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The refresh-timeout can be set directly on the connection factory by using the setter method setDiscoveryRe-

freshTimeout() if you want to change the default value.

There is also a further parameter settable on the connection factory using the setter method setInitialWait-

Timeout(). If the connection factory is used immediately after creation then it may not have had enough time to re-
ceived broadcasts from all the nodes in the cluster. On first usage, the connection factory will make sure it waits
this long since creation before creating the first connection. The default value for this parameter is 2000 milli-
seconds.

36.2.4.2. Configuring client discovery using Core

If you're using the core API to directly instantiate ClientSessionFactory instances, then you can specify the dis-
covery group parameters directly when creating the session factory. Here's an example:final String groupAddress =
"231.7.7.7"; final int groupPort = 9876; SessionFactory factory = new ClientSessionFactoryImpl(groupAddress,

Clusters

140

groupPort); ClientSession session1 = factory.createClientSession(...); ClientSession session2 = fact-
ory.createClientSession(...);

The refresh-timeout can be set directly on the session factory by using the setter method setDiscoveryRefresh-

Timeout() if you want to change the default value.

There is also a further parameter settable on the session factory using the setter method
setInitialWaitTimeout(). If the session factory is used immediately after creation then it may not have had
enough time to received broadcasts from all the nodes in the cluster. On first usage, the session factory will make
sure it waits this long since creation before creating the first session. The default value for this parameter is 2000

milliseconds.

36.3. Server-Side Message Load Balancing

If cluster connections are defined between nodes of a cluster, then JBoss Messaging will load balance messages ar-
riving from at a particular node from a client.

Let's take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric cluster (described in
Section 36.7.1). We have a queue called OrderQueue deployed on each node of the cluster.

We have client Ca connected to node A, sending orders to the server. We have also have order processor clients Pa,
Pb, Pc, and Pd connected to each of the nodes A, B, C, D. If no cluster connection was defined on node A, then as
order messages arrive on node A they will all end up in the OrderQueue on node A, so will only get consumed by
the order processor client attached to node A, Pa.

If we define a cluster connection on node A, then as ordered messages arrive on node A instead of all of them go-
ing into the local OrderQueue instance, they are distributed in a round-robin fashion between all the nodes of the
cluster. The messages are forwarded from the receiving node to other nodes of the cluster. This is all done on the
server side, the client maintains a single connection to node A.

For example, messages arriving on node A might be distributed in the following order between the nodes: B, D, C,
A, B, D, C, A, B, D. The exact order depends on the order the nodes started up, but the algorithm used is round
robin.

JBoss Messaging cluster connections can be configured to always blindly load balance messages in a round robin
fashion irrespective of whether there are any matching consumers on other nodes, but they can be a bit cleverer
than that and also be configured to only distribute to other nodes if they have matching consumers. We'll look at
both these cases in turn with some examples, but first we'll discuss configuring cluster connections in general.

36.3.1. Configuring Cluster Connections

Cluster connections group servers into clusters so that messages can be load balanced between the nodes of the
cluster. Let's take a look at a typical cluster connection. Cluster connections are always defined in jbm-

configuration.xml inside a cluster-connection element. There can be zero or more cluster connections defined
per JBoss Messaging server.

<cluster-connections>
<cluster-connection name="my-cluster">

<address>jms</address>
<retry-interval>500</retry-interval>

Clusters

141

<use-duplicate-detection>true</use-duplicate-detection>
<forward-when-no-consumers>false</forward-when-no-consumers>
<max-hops>1</max-hops>
<discovery-group-ref discovery-group-name="my-discovery-group"/>

</cluster-connection>
</cluster-connections>

In the above cluster connection all parameters have been explicitly specified. In practice you might use the defaults
for some.

• address. Each cluster connection only applies to messages sent to an address that starts with this value.

In this case, this cluster connection will load balance messages sent to address that start with jms. This cluster
connection, will, in effect apply to all JMS queue and topic subscriptions since they map to core queues that
start with the substring "jms".

The address can be any value and you can have many cluster connections with different values of address,
simultaneously balancing messages for those addresses, potentially to different clusters of servers. By having
multiple cluster connections on different addresses a single JBoss Messaging Server can effectively take part in
multiple clusters simultaneously.

By careful not to have multiple cluster connections with overlapping values of address, e.g. "europe" and
"europe.news" since this could result in the same messages being distributed between more than one cluster
connection, possibly resulting in duplicate deliveries.

This parameter is mandatory.

• retry-interval. We mentioned before that, internally, cluster connections cause bridges to be created between
the nodes of the cluster. If the cluster connection is created and the target node has not been started, or say, is
being rebooted, then the cluster connections from other nodes will retry connecting to the target until it comes
back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same meaning as the
retry-interval on a bridge (as described in Chapter 34).

This parameter is optional and its default value is 500 milliseconds.

• use-duplicate-detection. Internally cluster connections use bridges to link the nodes, and bridges can be
configured to add a duplicate id property in each message that is forwarded. If the target node of the bridge
crashes and then recovers, messages might be resent from the source node. By enabling duplicate detection any
duplicate messages will be filtered out and ignored on receipt at the target node.

This parameter has the same meaning as use-duplicate-detection on a bridge. For more information on du-
plicate detection, please see Chapter 35.

This parameter is optional and has a default value of true.

• forward-when-no-consumers. This parameter determines whether messages will be distributed round robin
between other nodes of the cluster irrespective of whether there are matching or indeed any consumers on other
nodes.

Clusters

142

If this is set to true then each incoming message will be round robin'd even though the same queues on the oth-
er nodes of the cluster may have no consumers at all, or they may have consumers that have non matching mes-
sage filters (selectors). Note that JBoss Messaging will not forward messages to other nodes if there are no
queues of the same name on the other nodes, even if this parameter is set to true.

If this is set to false then JBoss Messaging will only forward messages to other nodes of the cluster if the ad-
dress to which they are being forwarded has queues which have consumers, and if those consumers have mes-
sage filters (selectors) at least one of those selectors must match the message.

This parameter is optional, the default value is false.

• max-hops. When a cluster connection decides the set of nodes to which it might load balance a message, those
nodes do not have to be directly connected to it via a cluster connection. JBoss Messaging can be configured to
also load balance messages to nodes which might be connected to it only indirectly with other JBoss Messaging
servers as intermediates in a chain.

This allows JBoss Messaging to be configured in more complex topologies and still provide message load bal-
ancing. We'll discuss this more later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to other JBoss Mes-
saging serves which are directly connected to this server. This parameter is optional.

• discovery-group-ref. This parameter determines which discovery group is used to obtain the list of other
servers in the cluster that this cluster connection will make connections to.

36.4. Client-Side Load balancing

With JBoss Messaging client-side connection load balancing, subsequent client connections created using a single
factory can be made to different nodes of the cluster. This allows connections to spread smoothly across the nodes
of a cluster and not be "clumped" on any particular node.

The load balancing policy to be used by the client factory is configurable. JBoss Messaging provides two out-
of-the-box load balancing policies and you can also implement your own and use that.

The out-of-the-box policies are

• Round Robin. With this policy the first node is chosen randomly then each subsequent node is chosen sequen-
tially in the same order.

For example nodes might be chosen in the order B, C, D, A, B, C, D, A, B or D, A, B, C, A, B, C, D, A or C, D,
A, B, C, D, A, B, C, D, A.

• Random. With this policy each node is chosen randomly.

You can also implement your own policy by implementing the interface
org.jboss.messaging.core.client.ConnectionLoadBalancingPolicy

Specifying which load balancing policy to use differs whether you are using JMS or the core API. If you don't spe-

Clusters

143

cify a policy then the default will be used which is
org.jboss.messaging.core.client.impl.RoundRobinConnectionLoadBalancingPolicy.

If you're using JMS, and you're using JNDI on the server to put your JMS connection factories into JNDI, then you
can specify the load balancing policy directly in the jbm-jms.xml configuration file on the server as follows:

<connection-factory name="ConnectionFactory">
<discovery-group-ref discovery-group-name="my-discovery-group"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>
<connection-load-balancing-policy-class-name>
org.jboss.messaging.core.client.impl.RandomConnectionLoadBalancingPolicy
</connection-load-balancing-policy-class-name>

</connection-factory>

The above example would deploy a JMS connection factory that uses the random connection load balancing policy.

If you're using JMS but you're instantiating your connection factory directly on the client side then you can set the
load balancing policy using the setter on the JBossConnectionFactory before using it:

ConnectionFactory jmsConnectionFactory = new JBossConnectionFactory(...);
jmsConnectionFactory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

If you're using the core API, you can set the load balancing policy directly on the ClientSessionFactory instance
you are using:

ClientSessionFactory factory = new ClientSessionFactoryImpl(...);
factory.setLoadBalancingPolicyClassName("com.acme.MyLoadBalancingPolicy");

The set of servers over which the factory load balances can be determined in one of two ways:

• Specifying servers explicitly

• Using discovery.

36.5. Specifying Members of a Cluster Explicitly

Sometimes UDP is not enabled on a network so it's not possible to use UDP server discovery for clients to discover
the list of servers in the cluster, or for servers to discover what other servers are in the cluster.

In this case, the list of servers in the cluster can be specified explicitly on each node and on the client side. Let's
look at how we do this:

36.5.1. Specify List of Servers on the Client Side

This differs depending on whether you're using JMS or the Core API

Clusters

144

36.5.1.1. Specifying List of Servers using JMS

If you're using JMS, and you're using the JMS Service to load your JMS connection factory instances directly into
JNDI on the server, then you can specify the list of servers in the server side configuration file jbm-jms.xml. Let's
take a look at an example:

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="my-connector1"

backup-connector-name="my-backup-connector1"/>
<connector-ref connector-name="my-connector2"

backup-connector-name="my-backup-connector2"/>
<connector-ref connector-name="my-connector3"

backup-connector-name="my-backup-connector3"/>
<entries>

<entry name="ConnectionFactory"/>
</entries>

</connection-factory>

The connection-factory element can contain zero or more connector-ref elements, each one of which specifies
a connector-name attribute and an optional backup-connector-name attribute. The connector-name attribute ref-
erences a connector defined in jbm-configuration.xml which will be used as a live connector. The backup-

connector-name is optional, and if specified it also references a connector defined in jbm-configuration.xml. For
more information on connectors please see Chapter 14.

The connection factory thus maintains a list of [connector, backup connector] pairs, these pairs are then used by the
client connection load balancing policy on the client side when creating connections to the cluster.

If you're using JMS but you're not using JNDI then you can also specify the list of [connector, backup connector]
pairs directly when instantiating the JBossConnectionFactory, here's an example:

List<Pair<TransportConfiguration, TransportConfiguration>> serverList =
new ArrayList<Pair<TransportConfiguration, TransportConfiguration>>();

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC0, backupTC0));

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC1, backupTC1));

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC2, backupTC2));

ConnectionFactory jmsConnectionFactory = new JBossConnectionFactory(serverList);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();

Connection jmsConnection2 = jmsConnectionFactory.createConnection();

In the above snippet we create a list of pairs of TransportConfiguration objects. Each TransportConfiguration

object contains knowledge of how to make a connection to a specific server.

A JBossConnectionFactory instance is then created passing the list of servers in the constructor. Any connections
subsequently created by this factory will create connections according to the client connection load balancing
policy applied to that list of servers.

36.5.1.2. Specifying List of Servers using the Core API

If you're using the core API you can also specify the list of servers directly when creating the ClientSessionFact-

Clusters

145

ory instance. Here's an example:

List<Pair<TransportConfiguration, TransportConfiguration>> serverList =
new ArrayList<Pair<TransportConfiguration, TransportConfiguration>>();

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC0, backupTC0));

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC1, backupTC1));

serverList.add(new Pair<TransportConfiguration,
TransportConfiguration>(liveTC2, backupTC2));

ClientSessionFactory factory = new ClientSessionFactoryImpl(serverList);

ClientSession sesison1 = factory.createClientSession(...);

ClientSession session2 = factory.createClientSession(...);

In the above snippet we create a list of pairs of TransportConfiguration objects. Each TransportConfiguration

object contains knowledge of how to make a connection to a specific server. For more information on this, please
see Chapter 14.

A ClientSessionFactoryImpl instance is then created passing the list of servers in the constructor. Any sessions
subsequently created by this factory will create sessions according to the client connection load balancing policy
applied to that list of servers.

36.5.2. Specifying List of Servers to form a Cluster

Let's take a look at an example where each cluster connection is defined for a symmetric cluster, but we're not us-
ing discovery for each node to discover its neighbours, instead we'll configure each cluster connection to have ex-
plicit knowledge of all the other nodes in the cluster.

Here's an example cluster connection definition showing that:

<cluster-connections>
<cluster-connection name="my-explicit-cluster">

<address>jms</address>
<connector-ref connector-name="my-connector1"

backup-connector-name="my-backup-connector1"/>
<connector-ref connector-name="my-connector2"

backup-connector-name="my-backup-connector2"/>
<connector-ref connector-name="my-connector3"

backup-connector-name="my-backup-connector3"/>
</cluster-connection>

</cluster-connections>

The cluster-connection element can contain zero or more connector-ref elements, each one of which specifies
a connector-name attribute and an optional backup-connector-name attribute. The connector-name attribute ref-
erences a connector defined in jbm-configuration.xml which will be used as a live connector. The backup-

connector-name is optional, and if specified it also references a connector defined in jbm-configuration.xml. For
more information on connectors please see Chapter 14.

36.6. Message Redistribution

Another important part of clustering is message redistribution. Earlier we learned how server side message load

Clusters

146

balancing round robins messages across the cluster. If forward-when-no-consumers is false, then messages won't
be forwarded to nodes which don't have matching consumers, this is great and ensures that messages don't arrive on
a queue which has no consumers to consume them, however there is a situation it doesn't solve: What happens if
the consumers on a queue close after the messages have been sent to the node? If there are no consumers on the
queue the message won't get consumed and we have a starvation situation.

This is where message redistribution comes in. With message redistribution JBoss Messaging can be configured to
automatically redistribute messages from queues which have no consumers back to other nodes in the cluster
which do have matching consumers.

Message redistribution can be configured to kick in immediately after the last consumer on a queue is closed, or to
wait a configurable delay after the last consumer on a queue is closed before redistributing. By default message re-
distribution is disabled.

Message redistribution can be configured on a per address basis, by specifying the redistribution delay in the ad-
dress settings, for more information on configuring address settings, please see Chapter 24.

Here's an address settings snippet from jbm-configuration.xml showing how message redistribution is enabled
for a set of queues:

<address-settings>
<address-setting match="jms.#">

<redistribution-delay>0</redistribution-delay>
</address-setting>

</address-settings>

The above address-settings block would set a redistribution-delay of 0 for any queue which is bound to an
address that starts with "jms.". All JMS queues and topic subscriptions are bound to addresses that start with "jms.",
so the above would enable instant (no delay) redistribution for all JMS queues and topic subscriptions.

The attribute match can be an exact match or it can be a string that conforms to the JBoss Messaging wildcard syn-
tax (described in Chapter 11).

The element redistribution-delay defines the delay in milliseconds after the last consumer is closed on a queue
before redistributing messages from that queue to other nodes of the cluster which do have matching consumers. A
delay of zero means the messages will be immediately redistributed. A value of -1 signifies that messages will nev-
er be redistributed. The default value is -1.

It often makes sense to introduce a delay before redistributing as it's a common case that a consumer closes but an-
other one quickly is created on the same queue, in such a case you probably don't want to redistribute immediately
since the new consumer will arrive shortly.

36.7. Cluster topologies

JBoss Messaging clusters can be connected together in many different topologies, let's consider the two most com-
mon ones here

36.7.1. Symmetric cluster

Clusters

147

A symmetric cluster is probably the most common cluster topology, and you'll be familiar with if you've had exper-
ience of JBoss Application Server clustering.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster. In other words
every node in the cluster is no more than one hop away from every other node.

To form a symmetric cluster every node in the cluster defines a cluster connection with the attribute max-hops set
to 1. Typically the cluster connection will use server discovery in order to know what other servers in the cluster it
should connect to, although it is possible to explicitly define each target server too in the cluster connection if, for
example, UDP is not available on your network.

With a symmetric cluster each node knows about all the queues that exist on all the other nodes and what con-
sumers they have. With this knowledge it can determine how to load balance and redistribute messages around the
nodes.

36.7.2. Chain cluster

With a chain cluster, each node in the cluster is not connected to every node in the cluster directly, instead the
nodes form a chain with a node on each end of the chain and all other nodes just connecting to the previous and
next nodes in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted in one network
and has many producer clients connected to it sending order messages. Due to corporate policy, the order consumer
clients need to be hosted in a different network, and that network is only accessible via a third network. In this
setup node B acts as a mediator with no producers or consumers on it. Any messages arriving on node A will be
forwarded to node B, which will in turn forward them to node C where they can get consumed. Node A does not
need to directly connect to C, but all the nodes can still act as a part of the cluster.

To set up a cluster in this way, node A would define a cluster connection that connects to node B, and node B
would define a cluster connection that connects to node C. In this case we only want cluster connections in one dir-
ection since we're only moving messages from node A->B->C and never from C->B->A.

For this topology we would set max-hops to 2. With a value of 2 the knowledge of what queues and consumers that
exist on node C would be propagated from node C to node B to node A. Node A would then know to distribute
messages to node B when they arrive, even though node B has no consumers itself, it would know that a further
hop away is node C which does have consumers.

Clusters

148

37
High Availability and Failover

We define high availability as the ability for the system to continue functioning after failure of one or more of the
servers. A part of high availability is failover which we define as the ability for client connections to migrate from
one server to another in event of server failure so client applications can continue to operate.

JBoss Messaging provides high availability by replicating servers in pairs. It also provides both 100% transparent
client failover and application-level client failover.

37.1. Server replication

JBoss Messaging allows pairs of servers to be linked together as live - backup pairs. In this release there is a single
backup server for each live server. Backup servers are not operational until failover occurs. In later releases we will
most likely support replication onto multiple backup servers.

When a live - backup pair is configured, JBoss Messaging ensures that the live server state is replicated to the
backup server. Replicated state includes session state, and also global state such as the set of queues and addresses
on the server.

When a client fails over from live to backup server, the backup server will already have the correct global and ses-
sion state, so the client will be able to resume its session(s) on the backup server as if nothing happened.

Replication is performed in an asynchronous fashion between live and backup server. Data is replicated one way in
a stream, and responses that the data has reached the backup is returned in another stream. By pipelining replica-
tions and responses to replications in separate streams allows replication throughput to be much higher than if we
synchronously replicated data and waited for a response serially in an RPC manner before replicating the next piece
of data.

37.1.1. Configuring live-backup pairs

First, on the live server, in jbm-configuration.xml configure the live server with knowledge of its backup server.
This is done by specifying a backup-connector-ref element. This element references a connector, also specified
on the live server which contains knowledge of how to connect to the backup server. Here's a snippet from jbm-

configuration.xml showing a live server configured with a backup server:

<backup-connector-ref connector-name="backup-connector"/>

<!-- Connectors -->

<connectors>

...

<!-- This connector specifies how to connect to the backup server -->

149

<connector name="backup-connector">
<factory-class>

org.jboss.messaging.integration.transports.netty.NettyConnectorFactory
</factory-class>
<param key="jbm.remoting.netty.port" value="5445" type="Integer"/>

</connector>

</connectors>

Secondly, on the backup server, also in jbm-configuration.xml , the element backup must be set to true. I.e. :

<backup>true</backup>

37.1.2. Synchronization of live-backup pairs

In order for live - backup pairs to operate properly, they must be identical replicas. This means you cannot just use
any backup server that's previously been used for other purposes as a backup server, since it will have different data
in its persistent storage. If you try to do so you will receive an exception in the logs and the server will fail to start.

To create a backup server for a live server that's already been used for other purposes, it's necessary to copy the
data directory from the live server to the backup server. This means the backup server will have an identical per-
sistent store to the backup server.

Similarly when a client fails over from a live server L to a backup server B, the server L becomes invalid since, from
that point on, the data on L and B may diverge. After such a failure, at the next available opportunity the B server
should be taken down, and its data directory copied back to the L server. Live and backup servers can then be re-
started. In this release of JBoss Messaging we do not provide any automatic facility for re-assigning a backup node
with a live node while it is running.

For a backup server to function correctly it's also important that it has the same set of bridges, predefined queues,
cluster connections, broadcast groups and discovery groups as defined on the live node. The easiest way to ensure
this is just to copy the entire server side configuration from live to backup and just make the changes as specified in
the previous section.

37.1.3. Queue activation timeout

If a live server fails, as client connections failover from the live node to the backup, they do so at a rate determined
by the client, and it might be the case that some client connections never fail over.

Different client connections may have different consumers on the same queue(s). The queue on the backup will
wait for all its consumers to reattach before activating delivery on itself. If all connections have not reattached with
this timeout then the queue will activate regardless.

This param is defined in jbm-configuration.xml using the setting queue-activation-timeout. Its default value
is 30000 milliseconds.

37.2. Automatic client failover

JBoss Messaging clients can be configured with knowledge of live and backup servers, so that in event of connec-

High Availability and Failover

150

tion failure of the client - live server connection, the client will detect this and reconnect its sessions to the backup
server. Because of server replication, then backup server will already have those sessions in the same state they
were left on the live server and the client will be able to reconnect them and resume them 100% transparently as if
nothing happened.

For automatic failover JBoss Messaging requires zero coding of special failover code on the client or server. This
differs from other messaging systems which intrusively require you to code special failover handling code. JBoss
Messaging automatic failover preserves all your normal JMS or core API semantics and allows your client code to
continue 100% uninterrupted on event of connection failure and failover from a live to a backup server.

JBoss Messaging clients detect connection failure when it has not received packets from the server within the time
given by client-failure-check-period as explained in section Chapter 15. If the client does not receive data in
good time, it will assume the connection has failed and attempt failover.

JBoss Messaging clients can be configured with the list of live-backup server pairs in a number of different ways.
They can be configured explicitly or probably the most common way of doing this is to use server discovery for the
client to automatically discover the list. For full details on how to configure clients please see Section 36.2.

Sometimes you want a client to failover onto a backup server even if the live server is just cleanly shutdown rather
than having crashed or the connection failed. To configure this you can set the property FailoverOnServerShut-

down to false either on the JBossConnectionFactory if you're using JMS or in the jbm-jms.xml file when you
define the connection factory, or if using core by setting the property directly on the ClientSessionFactoryImpl

instance after creation. The default value for this property is false, this means that by default JBoss Messaging cli-
ents will not failover to a backup server if the live server is simply shutdown cleanly.

For a fully functional example of automatic failover, please see Section 9.1.2.

37.3. Application-level client failover

In some cases you may not want automatic client failover, and prefer to handle any connection failure yourself, and
code your own manually reconnection logic in your own failure handler. We define this as application-level fail-
over, since the failover is handled at the user application level.

If all your clients use application-level failover then you do not need server replication on the server side, and
should disabled this. Server replication has some performance overhead and should be disabled if it is not required.
To disable server replication simply do not specify a backup-connector element for each live server.

To implement application-level failover, if you're using JMS then you need to code an ExceptionListener class
on the JMS connection. The ExceptionListener will be called by JBoss Messaging in the event that connection
failure is detected. In your ExceptionListener you would close your old JMS connections, potentially look up
new connection factory instances from JNDI and creating new connections. In this case you may well be using HA-
JNDI [http://www.jboss.org/community/wiki/JBossHAJNDIImpl] to ensure that the new connection factory is
looked up from a different server.

For a working example of application-level failover, please see Section 9.1.1.

If you are using the core API, then the procedure is very similar: you would code a FailureListener on your core
ClientSession instances.

High Availability and Failover

151

http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl

38
Libaio Native Libraries

JBoss Messaging distributes a native library, used as a bridge between JBoss Messaging and linux libaio.

libaio is a library, developed as part of the linux kernel project. With libaio we submit writes to the operating
system where they are processed asynchronously. Some time later the OS will call our code back when they have
been processed.

These are the native libraries distributed by JBoss Messaging:

• libJBMLibAIO32.so - x86 32 bits

• libJBMLibAIO64.so - x86 64 bits

• libJBMLibAIO_ia64.so - Itanium 64 bits

When using libaio, JBoss Messaging will aways try loading these files as long as they are on the library path.

38.1. Compiling the native libraries

Case you are using Linux on a platform other than x86_32, x86_64 or IA64 (Itanium), (for example IBM POWER)
you may need to compile the native library, since we do not distribute binaries for those platforms with the release.

38.1.1. Install requirements

Note

At the moment the native layer is only available on Linux. If you are in a platform other than Linux the
native compilation will not work

The native library uses autoconf [http://en.wikipedia.org/wiki/Autoconf] what makes the compilation process easy,
however you need to install extra packages as a requirement for compilation:

• gcc - C Compiler

• gcc-c++ or g++ - Extension to gcc with support for C++

• autoconf - Tool for automating native build process

• make - Plain old make

152

http://en.wikipedia.org/wiki/Autoconf

• automake - Tool for automating make generation

• libtool - Tool for link editing native libraries

• libaio - library to disk asynchronous IO kernel functions

• libaio-dev - Compilation support for libaio

• A full JDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at a command line:

sudo yum install automake libtool autoconf gcc-g++ gcc libaio libaio-dev make

Or on debian systems:

sudo apt-get install automake libtool autoconf gcc-g++ gcc libaio libaio-dev make

Note

You could find a slight variation of the package names depending on the version and linux distribution.
(for example gcc-c++ on Fedora versus g++ on Debian systems)

38.1.2. Invoking the compilation

In the distribution, in the native-src directory, execute the shell script bootstrap. This script will invoke auto-

make and make what will create all the make files and the native library.

someUser@someBox:/messaging-distribution/native-src$./bootstrap
checking for a BSD-compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /bin/mkdir -p

...

configure: creating ./config.status
config.status: creating Makefile
config.status: creating ./src/Makefile
config.status: creating config.h
config.status: config.h is unchanged
config.status: executing depfiles commands
config.status: executing libtool commands

...

The produced library will be at ./native-src/src/.libs/libJBMLibAIO.so. Simply move that file over bin on
the distribution or the place you have chosen on the library path.

If you want to perform changes on the JBoss Messaging libaio code, you could just call make directly at the nat-

ive-src directory.

Libaio Native Libraries

153

39
Thread management

This chapter describes how JBoss Messaging uses and pools threads and how you can manage them.

First we'll discuss how threads are managed and used on the server side, then we'll look at the client side.

39.1. Server-Side Thread Management

Each JBoss Messaging Server maintains a single thread pool for general use, and a scheduled thread pool for
scheduled use. A Java scheduled thread pool cannot be configured to use a standard thread pool, otherwise we
could use a single thread pool for both scheduled and non scheduled activity.

There are also a small number of other places where threads are used directly, we'll discuss each in turn.

39.1.1. Server Scheduled Thread Pool

The server scheduled thread pool is used for most activities on the server side that require running periodically or
with delays. It maps internally to a java.util.concurrent.ScheduledThreadPoolExecutor instance.

The maximum number of thread used by this pool is configure in jbm-configuration.xml with the scheduled-

thread-pool-max-size parameter. The default value is 5 threads. A small number of threads is usually sufficient
for this pool.

39.1.2. General Purpose Server Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. It maps internally to a
java.util.concurrent.ThreadPoolExecutor instance.

The maximum number of thread used by this pool is configure in jbm-configuration.xml with the thread-

pool-max-size parameter.

If a value of -1 is used this signifies that the thread pool has no upper bound and new threads will be created on de-
mand if there are enough threads available to satisfy a request. If activity later subsides then threads are timed-out
and closed.

If a value of n where nis a positive integer greater than zero is used this signifies that the thread pool is bounded. If
more requests come in and there are no free threads in the pool and the pool is full then requests will block until a
thread becomes available. It is recommended that a bounded thread pool is used with caution since it can lead to
dead-lock situations if the upper bound is chosen to be too low.

The default value for thread-pool-max-size is -1, i.e. the thread pool is unbounded.

154

See the J2SE javadoc [http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html] for
more information on unbounded (cached), and bounded (fixed) thread pools.

39.1.3. Expiry Reaper Thread

A single thread is also used on the server side to scan for expired messages in queues. We cannot use either of the
thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, please see Chapter 21.

39.1.4. Asynchronous IO

Asynchronous IO has a thread pool for receiving and dispatching events out of the native layer. You will find it on
a thread dump with the prefix JBM-AIO-poller-pool. JBoss Messaging uses one thread per opened file on the
journal (there is usually one).

There is also a single thread used to invoke writes on libaio. We do that to avoid context switching on libaio what
would cause performance issues. You will find this thread on a thread dump with the prefix JBM-AIO-writer-pool.

39.2. Client-Side Thread Management

On the client side, JBoss Messaging maintains a single static scheduled thread pool and a single static general
thread pool for use by all clients using the same classloader in that JVM instance.

The static scheduled thread pool has a maximum size of 2 threads, and the general purpose thread pool has an un-
bounded maximum size.

If required JBoss Messaging can also be configured so that each ClientSessionFactory instance does not use
these static pools but instead maintains its own scheduled and general purpose pool. Any sessions created from that
ClientSessionFactory will use those pools instead.

To configure a ClientSessionFactory instance to use its own pools, simply use the appropriate setter methods im-
mediately after creation, for example:

ClientSessionFactory myFactory = new ClientSessionFactory(...);
myFactory.setUseGlobalPools(false);
myFactory.setScheduledThreadPoolMaxSize(10);
myFactory.setThreadPoolMaxSize(-1);

If you're using the JMS API, you can set the same parameters directly on the JBossConnectionFactory instance,
for example:

JBossConnectionFactory myFactory = new JBossConnectionFactory(...);
myFactory.setUseGlobalPools(false);
myFactory.setScheduledThreadPoolMaxSize(10);
myFactory.setThreadPoolMaxSize(-1);

If you're using JNDI to instantiate JBossConnectionFactory instances, you can also set these parameters in the
jbm-jms.xml file where you describe your connection factory, for example:

Thread management

155

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

<connection-factory name="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>

<entry name="ConnectionFactory"/>
<entry name="XAConnectionFactory"/>

</entries>
<use-global-pools>false</use-global-pools>
<scheduled-thread-pool-max-size>10</scheduled-thread-pool-max-size>
<thread-pool-max-size>-1</thread-pool-max-size>

</connection-factory>

Thread management

156

40
Logging

JBM uses standard JDK logging [http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/], (a.k.a Java-Util-Logging:
JUL), for all its logging. This means we have no dependencies on any third party logging framework. Users can
provide their own logging handler to use or alternatively use the log4j handler supplied by JBoss Messaging.

The handlers are configured via the JUL logging.properties file. This default location for this file is under the
lib directory found in the Java home directory but it can be overridden by setting the
java.util.logging.config.file system property to point to the appropriate logging.properties file. The stan-
dalone JBM server does this and the logging.properties file can be found under the config directory of the JBM
installation.

By default the standalone server is configured to use the standard console handler and a file handler that logs to
bin/logs/messaging.log.

Because some of the third party components used to bootstrap JBoss Messaging, i.e. the Microcontainer, use the
JBoss Logging framework we have supplied a plugin class that redirects this to the JUL logger. This is set via a
system property, -

Dorg.jboss.logging.Logger.pluginClass=org.jboss.messaging.integration.logging.JBMLoggerPlugin.
This is only needed when starting the standalone server and is set in the run script. This is not a problem if you are
embedding JBoss Messaging in your own code as the Microcontainer won't be being used.

If you want configure your client's logging, make sure you provide a logging.properties file and set the
java.util.logging.config.file property on client startup

40.1. Log4j Configuration

JBoss Messaging supplies a JUL Log4j handler that can be used instead of the defaults. To use this simply edit the
logging.properties file as such:

handlers=org.jboss.messaging.integration.logging.Log4jLoggerHandler

You will also need to download the Log4j jars and place them in the lib directory and also provide a log4j config-
uration and place it on the appropriate config directory, i.e. config/common.

40.2. Logging With The JBoss Application Server

When JBoss Messaging is deployed within the Application Server then it will still use JUL however the logging is
redirected to the default JBoss logger. For more information on this refer to the JBoss documentation.

157

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

41
Embedding JBoss Messaging

JBoss Messaging is designed as set of simple Plain Old Java Objects (POJOs). This means JBoss Messaging can be
instantiated and run in any dependency injection framework such as JBoss Microcontainer, Spring or Google
Guice. It also means that if you have an application that could use messaging functionality internally, then it can
directly instantiate JBoss Messaging clients and servers in its own application code to perform that functionality.
We call this embedding JBoss Messaging.

Examples of applications that might want to do this include any application that needs very high performance,
transactional, persistent messaging but doesn't want the hassle of writing it all from scratch.

Embedding JBM can be done in very few easy steps. Instantiate the configuration object, instantiate the server,
start it, and you have a JBoss Messaging running in your virtual machine. It's as simple and easy as that.

41.1. POJO instantiation

You can follow this step-by-step guide:

Create the configuration object - this contains configuration information for a JBoss Messaging server. If you want
to configure it from a file on the classpath, use FileConfigurationImpl

import org.jboss.messaging.core.config.Configuration;
import org.jboss.messaging.core.config.impl.FileConfiguration;

...

Configuration config = new FileConfiguration();
config.setConfigurationUrl(urlToYourconfigfile);
config.start();

If you don't need to support a configuration file, just use ConfigurationImpl and change the config parameters ac-
cordingly, such as adding acceptors.

The acceptors are configured through ConfigurationImpl. Just add the NettyAcceptorFactory on the transports
the same way you would through the main configuration file.

import org.jboss.messaging.core.config.Configuration;
import org.jboss.messaging.core.config.impl.ConfigurationImpl;

...

Configuration config = new ConfigurationImpl();
HashSet<TransportConfiguration> transports = new HashSet<TransportConfiguration>();

transports.add(new TransportConfiguration(NettyAcceptorFactory.class.getName()));
transports.add(new TransportConfiguration(InVMAcceptorFactory.class.getName()));

158

config.setAcceptorConfigurations(transports);

You need to instantiate and start JBoss Messaging server. The class
org.jboss.messaging.core.serverMessaging has a few static methods for creating servers with common config-
urations.

import org.jboss.messaging.core.server.Messaging;
import org.jboss.messaging.core.server.MessagingServer;

...

MessagingServer server = Messaging.newMessagingServer(config);

server.start();

You also have the option of instantiating MessagingServerImpl directly:

MessagingServer server =
new MessagingServerImpl(config);

server.start();

41.2. Dependency Frameworks

You may also choose to use a dependency injection framework such as JBoss Micro Container™ or Spring Frame-
work™.

JBoss Messaging standalone uses JBoss Micro Container as the injection framework. JBMBootstrapServer and
jbm-jboss-beans.xml which are part of the JBoss Messaging distribution provide a very complete implementation
of what's needed to bootstrap the server using JBoss Micro Container.

When using JBoss Micro Container, you need to provide a XML declaring the MessagingServer and Configura-

tion object, you can also inject a security manager and a MBean server if you want, but those are optional.

A very basic XML Bean declaration for the JBoss Micro Container would be:

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<!-- The core configuration -->
<bean name="Configuration"

class="org.jboss.messaging.core.config.impl.FileConfiguration">
</bean>

<!-- The core server -->
<bean name="MessagingServer"

class="org.jboss.messaging.core.server.impl.MessagingServerImpl">
<constructor>

<parameter>
<inject bean="Configuration"/>

</parameter>
</constructor>

</bean>
</deployment>

Embedding JBoss Messaging

159

JBMBootstrapServer provides an easy encapsulation of JBoss Micro Container.

JBMBootstrapServer bootStrap =
new JBMBootstrapServer(new String[] {"jbm-jboss-beans.xml"});
bootStrap.run();

41.3. Connecting to the Embedded JBoss Messaging

To connect clients to JBoss Messaging you just create the factories as normal:

41.3.1. Core API

If using the core API, just create the ClientSessionFactory and use the regular core API.

ClientSessionFactory nettyFactory = new ClientSessionFactoryImpl(
new TransportConfiguration(

InVMConnectorFactory.class.getName()));

ClientSession session = factory.createSession();

session.createQueue("example", "example", true);

ClientProducer producer = session.createProducer("example");

ClientMessage message = session.createClientMessage(true);

message.getBody().writeString("Hello");

producer.send(message);

session.start();

ClientConsumer consumer = session.createConsumer("example");

ClientMessage msgReceived = consumer.receive();

System.out.println("message = " + msgReceived.getBody().readString());

session.close();

41.3.2. JMS API

Connection on an Embedded JBoss Messaging through JMS is also simple. Just instantiate JBossConnectionFact-

ory directly. The following example illustrates that.

JBossConnectionFactory cf =
new JBossConnectionFactory(

new TransportConfiguration(InVMConnectorFactory.class.getName()));

Connection conn = cf.createConnection();

conn.start();

Session sess = conn.createSession(true, Session.SESSION_TRANSACTED);

MessageProducer prod = sess.createProducer(queue);

Embedding JBoss Messaging

160

TextMessage msg = sess.createTextMessage("Hello!");

prod.send(msg);

sess.commit();

MessageConsumer consumer = sess.createConsumer(queue);

TextMessage txtmsg = (TextMessage)consumer.receive();

System.out.println("Msg = " + txtmsg.getText());

sess.commit();

conn.close();

41.4. JMS Embedding Example

Please see Section 9.2.1 for an example which shows how to setup and run JBoss Messaging embedded with JMS.

Embedding JBoss Messaging

161

42
Intercepting Operations

JBoss Messaging supports interceptors to intercept packets entering and leaving the server. Any supplied intercept-
ors would be called for any packet entering or leaving the server, this allows custom code to be executed, e.g. for
auditing packets, filtering or other reasons. Interceptors can change the packets they intercept.

42.1. Implementing The Interceptors

A interceptor must implement the Interceptor interface:

package org.jboss.messaging.core.remoting;

public interface Interceptor
{

boolean intercept(Packet packet, RemotingConnection connection)
throws MessagingException;

}

The returned boolean value is important:

• if true is returned, the process continues normally

• if false is returned, the process is aborted, no other interceptors will be called and the packet will not be
handled by the server at all.

42.2. Configuring The Interceptors

The interceptors are configured in jbm-configuration.xml:

<remoting-interceptors>
<class-name>org.jboss.jms.example.LoginInterceptor</class-name>
<class-name>org.jboss.jms.example.AdditionalPropertyInterceptor</class-name>

</remoting-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be properly instantiated
and called.

42.3. Example

162

See Section 9.1.18 for an example which shows how to use interceptors to add properties to a message on the serv-
er.

Intercepting Operations

163

43
Interoperability

43.1. Stomp and StompConnect

Stomp [http://stomp.codehaus.org/] is a wire protocol that allows Stomp clients to communicate with Stomp
Brokers. StompConnect [http://stomp.codehaus.org/StompConnect] is a server that can act as a Stomp broker and
proxy the Stomp protocol to the standard JMS API. Consequently, using StompConnect it is possible to turn JBM
into a Stomp Broker and use any of the available stomp clients. These include clients written in C, C++, c# and .net
etc.

To run StompConnect first start the JBoss Messaging server and make sure that it is using JNDI.

Stomp requires the file jndi.properties to be available on the classpath. This should look something like:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Make sure this file is in the classpath along with the StompConnect jar and the JBoss Messaging jars and simply
run java org.codehaus.stomp.jms.Main.

JBoss Messaging will shortly be implementing the Stomp protocol directly, so you won't have to use StompCon-
nect to be able to use JBoss Messaging with Stomp clients.

43.2. AMQP

AMQP support coming soon!

43.3. REST

REST support coming soon!

164

http://stomp.codehaus.org/
http://stomp.codehaus.org/StompConnect

44
Performance Tuning

In this chapter we'll discuss how to tune JBoss Messaging for optimum performance.

44.1. Tuning the journal

• Minimum number of journal files. Set journal-min-files to a number of files that would fit your average sus-
tainable rate. If you see new files being created on the journal data directory too often, i.e. lots of data is being
persisted, you need to increase the minimal number of files, this way the journal would reuse more files instead
of creating new data files.

• Journal file size. The journal file size should be aligned to the capacity of a cylinder on the disk. The default
value 10MiB should be enough on most systems.

• Use AIO journal. If using Linux, try to keep your journal type as AIO.

• journal-aio-flush-on-sync. If you don't have many producers in your system you may consider setting
journal-aio-flush-on-sync to true. JBoss Messaging by default is optimized by the case where you have many
producers. We try to combine multiple writes in a single OS operation. However if that's not your case setting
this option to true will give you a performance boost.

On the other hand when you have multiple producers, keeping journal-aio-flush-on-sync set to false. This
will make your system flush multiple syncs in a single OS call making your system scale much better.

44.2. Tuning JMS

There are a few areas where some tweaks can be done if you are using the JMS API

• Disable message id. Use the setDisableMessageID() method on the MessageProducer class to disable mes-
sage ids if you don't need them. This decreases the size of the message and also avoids the overhead of creating
a unique ID.

• Disable message timestamp. Use the setDisableMessageTimeStamp() method on the MessageProducer class
to disable message timestamps if you don't need them. Again this makes the message smaller.

• Avoid ObjectMessage. ObjectMessage is convenient but it comes at a cost. The body of a ObjectMessage uses
Java serialization to serialize it to bytes. The Java serialized form of even small objects is very verbose so takes
up a lot of space on the wire, also Java serialization is slow compared to customer marshalling techniques. Only
use ObjectMessage if you really can't use one of the other message types, i.e. if you really don't know the type
of the payload until run-time.

165

• Avoid AUTO_ACKNOWLEDGE. AUTO_ACKNOWLEDGE mode requires an acknowledgement to be sent from the server
for each message received on the client, this means more traffic on the network. If you can, use
DUPS_OK_ACKNOWLEDGE or use CLIENT_ACKNOWLEDGE or a transacted session and batch up many acknowledge-
ments with one acknowledge/commit.

• Avoid persistent messages. By default JMS messages are persistent. If you don't really need persistent mes-
sages then set them to be non persistent. Persistent messages incur a lot more overhead in persisting them to
storage.

44.3. Other Tunings

There are various other places in JBoss Messaging where we can perform some tuning:

• Use Asynchronous Send Acknowledgements. If you need to send persistent messages non transactionally and
you need a guarantee that they have reached the server by the time the call to send() returns, don't set persistent
messages to be sent blocking, instead use asynchronous send acknowledgements to get your acknowledgements
of send back in a separate stream, see Chapter 19 for more information on this.

• Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged before they are sent to
the client. This reduces the amount of acknowledgment traffic on the wire. For more information on this, see
Chapter 28.

• Disable security. You may get a small performance boost by disabling security by setting the security-en-

abled parameter to false in jbm-configuration.xml.

• Disable persistence. If you don't need message persistence, turn it off altogether by setting persistence-en-

abled to false in jbm-configuration.xml.

• Sync transactions lazily. Setting journal-sync-transactional to false in jbm-configuration.xml can give
you better transactional persistent performance at the expense of some possibility of loss of transactions on fail-
ure. See Chapter 19 for more information.

• Use the core API not JMS. Using the JMS API you will have slightly lower performance than using the core
API, since all JMS operations need to be translated into core operations before the server can handle them.

44.4. Tuning Transport Settings

• Enable Nagle's algorithm [http://en.wikipedia.org/wiki/Nagle's_algorithm]. If you are sending many small mes-
sages, such that more than one can fit in a single IP packet thus providing better performance. This is done by
setting jbm.remoting.netty.tcpnodelay to false with the Netty transports. See Chapter 14 for more informa-
tion on this.

• TCP buffer sizes. If you have a fast network and fast machines you may get a performance boost by increasing
the TCP send and receive buffer sizes. See the Chapter 14 for more information on this.

• Increase limit on file handles on the server. If you expect a lot of concurrent connections on your servers, or if
clients are rapidly opening and closing connections, you should make sure the user running the server has per-

Performance Tuning

166

http://en.wikipedia.org/wiki/Nagle's_algorithm

mission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase the number of al-
lowable open file handles in the file /etc/security/limits.conf e.g. add the lines

serveruser soft nofile 20000
serveruser hard nofile 20000

This would allow up to 20000 file handles to be open by the user serveruser.

44.5. Tuning the VM

We highly recommend you use the latest Java 6 JVM, especially in the area of networking many improvements
have been made since Java 5. We test internally using the Sun JVM, so some of these tunings won't apply to JDKs
from other providers (e.g. IBM or JRockit)

• Garbage collection. For smooth server operation we recommend using a parallel garbage collection algorithm,
e.g. using the JVM argument -XX:+UseParallelGC on Sun JDKs.

• Memory settings. Give as much memory as you can to the server. JBoss Messaging can run in low memory by
using paging (described in Chapter 23) but if it can run with all queues in RAM this will improve performance.
The amount of memory you require will depend on the size and number of your queues and the size and num-
ber of your messages. Use the JVM arguments -Xms and -Xmx to set server available RAM. We recommend set-
ting them to the same high value.

• Aggressive options. Different JVMs provide different sets of JVM tuning parameters, for the Sun Hotspot JVM
the full list of options is available here [http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp]. We re-
commend at least using -XX:+AggressiveOpts and -XX:+UseFastAccessorMethods. You may get some
mileage with the other tuning parameters depending on your OS platform and application usage patterns.

44.6. Avoiding Anti-Patterns

• Re-use connections / sessions / consumers / producers. Probably the most common messaging anti-pattern we
see is users who create a new connection/session/producer for every message they send or every message they
consume. This is a poor use of resources. These objects take time to create and may involve several network
round trips. Always re-use them.

Note

Some popular libraries such as the Spring JMS Template are known to use these anti-patterns. If you're us-
ing Spring JMS Template and you're getting poor performance you know why. Don't blame JBoss Mes-
saging!

• Avoid fat messages. Verbose formats such as XML take up a lot of space on the wire and performance will suf-
fer as result. Avoid XML in message bodies if you can.

Performance Tuning

167

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

• Avoid many selectors on a queue. Another common anti-pattern is a single queue which has many consumers,
each one with a distinct message selector. As messages come into the queue they will typically only match one
of the consumers. This does not normally give good performance since as new consumers are added the entire
queue has to be scanned for matching messages.

This anti-pattern can normally be avoided by instead using a topic with many durable subscriptions, each sub-
scription defines a message selector. With topic subscriptions the selector expression is evaluated by JBoss
Messaging before the message goes into the subscription, so no scanning is involved.

• Don't create temporary queues for each request. This common anti-pattern involves the temporary queue re-
quest-response pattern. With the temporary queue request-response pattern a message is sent to a target and a
reply-to header is set with the address of a local temporary queue. When the recipient receives the message they
process it then send back a response to the address specified in the reply-to. A common mistake made with this
pattern is to create a new temporary queue on each message sent. This will drastically reduce performance. In-
stead the temporary queue should be re-used for many requests.

Performance Tuning

168

45
Configuration Reference

This section is a quick index for looking up configuration. Click on the element name to go to the specific chapter.

45.1. Server Configuration

45.1.1. jbm-configuration.xml

This is the main core server configuration file.

Table 45.1. Server Configuration

Element Name Element Type Description Default

backup Boolean true means that this serv-
er is a backup to another
node in the cluster

false

backup-connector-ref String the name of the remoting
connector to connect to
the backup node

bindings-directory String the directory to store the
persisted bindings to

data/bindings

clustered Boolean true means that the server
is clustered

false

connection-ttl-override Long if set, this will override
how long (in ms) to keep
a connection alive
without receiving a ping.

-1

create-bindings-dir Boolean true means that the server
will create the bindings
directory on start up

true

create-journal-dir Boolean true means that the journ-
al directory will be cre-
ated

true

file-deployment-enabled Boolean true means that the server
will load configuration

true

169

Element Name Element Type Description Default

from the configuration
files

global-page-size Long the standard size (in
bytes) of a page-file.
JBoss Messaging will
only read messages when
there is enough space to
read at least one page file,
determined by this value.

10 * 1024 * 1024

id-cache-size Integer the size of the cache for
pre creating message id's

2000

journal-aio-buffer-size Long The size of the internal
buffer on AIO.

128 KiB

journal-
aio-buffer-timeout

Long The timeout (in nano-
seconds) used to flush in-
ternal buffers.

20000

journal-aio-flush-on-sync Boolean If true, transactions will
ignore timeouts and be
persisted immediately

False

journal-com-
pact-min-files

Integer The minimal number of
data files before we can
start compacting

10

journal-com-
pact-percentage

Integer The percentage of live
data on which we con-
sider compacting the
journal

30

journal-directory String the directory to store the
journal files in

data/journal

journal-file-size Long the size (in bytes) of each
journal file

128 * 1024

journal-max-aio Integer the maximum number of
write requests that can be
in the AIO queue at any
one time

500

journal-min-files Integer how many journal files to
pre-create

2

journal-sync-transactional Boolean if true wait for transaction
data to be synchronized
to the journal before re-
turning response to client

true

Configuration Reference

170

Element Name Element Type Description Default

journal-
sync-non-transactional

Boolean if true wait for non trans-
action data to be synced
to the journal before re-
turning response to client.

false

journal-type ASYNCIO|NIO the type of journal to use ASYNCIO

jmx-management-enabled Boolean true means that the man-
agement API is available
via JMX

true

large-messages-directory String the directory to store
large messages

data/largemessages

management-address String the name of the manage-
ment address to send
management messages to

jbm.management

management-cluster-user String the user used to for rep-
licating management op-
erations between
clustered nodes

JBM.MANAGEMENT.A
DMIN.USER

management-
cluster-password

String the password used to for
replicating management
operations between
clustered nodes

CHANGE ME!!

management-notifica-
tion-address

String the name of the address
that consumers bind to re-
ceive management noti-
fications

jbm.notifications

management-re-
quest-timeout

Long how long (in ms) to wait
for a reply to a manage-
ment request

5000

message-counter-enabled Boolean true means that message
counters are enabled

false

message-
counter-max-day-history

Integer how many days to keep
message counter history

10

message-
counter-sample-period

Long the sample period (in ms)
to use for message coun-
ters

10000

message-ex-
piry-scan-period

Long how often (in ms) to scan
for expired messages

30000

message-ex-
piry-thread-priority

Integer the priority of the thread
expiring messages

3

Configuration Reference

171

Element Name Element Type Description Default

paging-directory String the directory to store
paged messages in

data/paging

paging-
max-global-size-bytes

Long JBoss Messaging enters
into global page mode as
soon as the total memory
consumed by messages
hits this value (in bytes)

-1

persist-deliv-
ery-count-before-delivery

Boolean true means that the deliv-
ery count is persisted be-
fore delivery. False
means that this only hap-
pens after a message has
been cancelled.

false

persistence-enabled Boolean true means that the server
will use the file based
journal for persistence.

true

persist-id-cache Boolean true means that id's are
persisted to the journal

true

queue-activation-timeout Long after failover occurs, this
timeout specifies how
long (in ms) to wait for
consumers to re-attach
before starting delivery

30000

scheduled-
thread-pool-max-size

Integer the number of threads
that the main scheduled
thread pool has.

5

security-enabled Boolean true means that security is
enabled

true

security-invalida-
tion-interval

Long how long (in ms) to wait
before invalidating the se-
curity cache

10000

thread-pool-max-size Integer the number of threads
that the main thread pool
has. -1 means no limit

-1

transaction-timeout Long how long (in ms) before a
transaction can be re-
moved from the resource
manager after create time

60000

transaction-
timeout-scan-period

Long how often (in ms) to scan
for timeout transactions

1000

wild- Boolean true means that the server true

Configuration Reference

172

Element Name Element Type Description Default

card-routing-enabled supports wild card rout-
ing

acceptors Acceptor a list of remoting accept-
ors to create

broadcast-groups BroadcastGroup a list of broadcast groups
to create

connectors Connector a list of remoting con-
nectors configurations to
create

discovery-groups DiscoveryGroup a list of discovery groups
to create

diverts Divert a list of diverts to use

divert.name (attribute) String a unique name for the di-
vert - mandatory

divert.routing-name String the routing name for the
divert - mandatory

divert.address String the address this divert
will divert from - mandat-
ory

divert.forwarding-address String the forwarding address
for the divert - mandatory

divert.exclusive Boolean is this divert exclusive? false

divert.filter String an optional core filter ex-
pression

null

di-
vert.transformer-class-na
me

String an optional class name of
a transformer

queues Queue a list of pre configured
queues to create

queues.name (attribute) String unique name of this
queue

queues.address String address for this queue -
mandatory

queues.filter String optional core filter ex-
pression for this queue

null

queues.durable Boolean is this queue durable? true

bridges Bridge a list of bridges to create

Configuration Reference

173

Element Name Element Type Description Default

bridges.name (attribute) String unique name for this
bridge

bridges.queue-name String name of queue that this
bridge consumes from -
mandatory

bridges.forwarding-addre
ss

String address to forward to. If
omitted original destina-
tion is used

null

bridges.filter String optional core filter ex-
pression

null

bridges.transformer-class-
name

String optional name of trans-
former class

null

bridges.retry-interval Long period (in ms) between
successive retries

2000 ms

bridges.retry-interval-mul
tiplier

Double multiplier to apply to suc-
cessive retry intervals

1.0

bridges.reconnect-attempt
s

Integer maximum number of
retry attempts, -1 signi-
fies infinite

-1

bridges.failover-on-server
-shutdown

Boolean should failover be promp-
ted if target server is
cleanly shutdown?

false

bridges.use-duplicate-det
ection

Boolean should duplicate detec-
tion headers be inserted
in forwarded messages?

true

bridges.discovery-group-r
ef

String name of discovery group
used by this bridge

null

bridges.connector-ref.con
nector-name (attribute)

String name of connector to use
for live connection

bridges.connector-ref.bac
kup-connector-name
(attribute)

String optional name of connect-
or to use for backup con-
nection

null

cluster-connections ClusterConnection a list of cluster connec-
tions

cluster-connections.name
(attribute)

String unique name for this
cluster connection

cluster-connec-
tions.address

String name of address this
cluster connection applies
to

Configuration Reference

174

Element Name Element Type Description Default

cluster-connec-
tions.forward-when-no-co
nsumers

Boolean should messages be load
balanced if there are no
matching consumers on
target?

false

cluster-connec-
tions.max-hops

Integer maximum number of
hops cluster topology is
propagated

1

cluster-connec-
tions.retry-interval

Long period (in ms) between
successive retries

2000

cluster-connec-
tions.use-duplicate-detect
ion

Boolean should duplicate detec-
tion headers be inserted
in forwarded messages?

true

cluster-connec-
tions.discovery-group-ref

String name of discovery group
used by this bridge

null

cluster-connec-
tions.connector-ref.conne
ctor-name (attribute)

String name of connector to use
for live connection

cluster-connec-
tions.connector-ref.backu
p-connector-name
(attribute)

String optional name of connect-
or to use for backup con-
nection

null

security-settings SecuritySetting a list of security settings

security-settings.match
(attribute)

String the string to use for
matching security against
an address

security-set-
tings.permission

Security Permission a permision to add to the
address

security-set-
tings.permission.type
(attribute)

Permission Type the type of permission

security-set-
tings.permission.roles
(attribute)

Roles a comma-separated list of
roles to apply the permis-
sion to

address-settings AddressSetting a list of address settings

address-set-
tings.dead-letter-address

String the address to send dead
messages too

address-set-
tings.max-delivery-attem
pts

Integer how many times to at-
tempt to deliver a mes-
sage before sending to

10

Configuration Reference

175

Element Name Element Type Description Default

dead letter address

address-set-
tings.expiry-address

String the address to send ex-
pired messages too

address-set-
tings.redelivery-delay

Long the time (in ms) to wait
before redelivering a can-
celled message.

0

address-set-
tings.last-value-queue

boolean whether to treat the queue
as a last value queue

false

address-set-
tings.distribution-policy-c
lass

String the class to use for dis-
tributing messages to a
consumer

RoundRobinDistributor

address-set-
tings.page-size-bytes

Long the page size (in bytes) to
use for an address

10 * 1024 * 1024

address-set-
tings.max-size-bytes

Long the maximum size (in
bytes) to use in paging for
an address

-1

address-set-
tings.redistribution-delay

Long how long (in ms) to wait
after the last consumer is
closed on a queue before
redistributing messages.

-1

45.1.2. jbm-jms.xml

This is the configuration file used by the server side JMS service to load JMS Queues, Topics and Connection
Factories.

Table 45.2. JMS Server Configuration

Element Name Element Type Description Default

connection-factory ConnectionFactory a list of connection
factories to create and
add to JNDI

connection-fact-
ory.auto-group

Boolean whether or not message
grouping is automatically
used

false

connection-fact-
ory.block-on-acknowledg
e

Boolean whether or not messages
are acknowledged syn-
chronously

false

connection-fact- Boolean whether or not non per- false

Configuration Reference

176

Element Name Element Type Description Default

ory.block-on-non-persiste
nt-send

sistent messages are sent
synchronously

connection-fact-
ory.block-on-persistent-se
nd

Boolean whether or not persistent
messages are sent syn-
chronously

false

connection-fact-
ory.call-timeout

Long the timeout (in ms) for re-
mote calls

30000

connection-fact-
ory.client-failure-check-p
eriod

Long the period (in ms) after
which the client will con-
sider the connection
failed after not receiving
packets from the server

5000

connection-fact-
ory.client-id

String the pre-configured client
ID for the connection
factory

null

connection-fact-
ory.connection-load-bala
ncing-policy-class-name

String the name of the load bal-
ancing class

org.jboss.messaging.core.
cli-
ent.impl.RoundRobinCon
nectionLoadBalancing-
Policy

connection-fact-
ory.connection-ttl

Long the time to live (in ms)
for connections

5 * 60000

connection-fact-
ory.consumer-max-rate

Integer the fastest rate a con-
sumer may consume mes-
sages per second

-1

connection-fact-
ory.consumer-window-siz
e

Integer the window size (in
bytes) for consumer flow
control

1024 * 1024

connection-fact-
ory.discovery-initial-wait
-timeout

Long the initial time to wait (in
ms) for discovery groups
to wait for broadcasts

2000

connection-fact-
ory.dups-ok-batch-size

Integer the batch size (in bytes)
between acknowledge-
ments when using
DUPS_OK_ACKNOWL
EDGE mode

1024 * 1024

connection-fact-
ory.failover-on-server-sh
utdown

Boolean whether or not to failover
on server shutdown

false

connection-fact-
ory.max-connections

Integer the maximum number of
connections per factory

8

Configuration Reference

177

Element Name Element Type Description Default

connection-fact-
ory.min-large-message-si
ze

Integer the size (in bytes) before
a message is treated as
large

100 * 1024

connection-fact-
ory.pre-acknowledge

Boolean whether messages are pre
acknowledged by the
server before sending

false

connection-fact-
ory.producer-max-rate

Integer the maximum rate of
messages per second that
can be sent

-1

connection-fact-
ory.producer-window-siz
e

Integer the window size (in
bytes) for sending mes-
sages

1024 * 1024

connection-fact-
ory.reconnect-attempts

Integer maximum number of
retry attempts, -1 signi-
fies infinite

0

connection-fact-
ory.retry-interval

Long the time (in ms) to retry a
connection after failing

2000

connection-fact-
ory.retry-interval-multipli
er

Double multiplier to apply to suc-
cessive retry intervals

1d

connection-fact-
ory.scheduled-thread-poo
l-max-size

Integer the size of the scheduled
thread pool

2

connection-fact-
ory.thread-pool-max-size

Integer the size of the thread pool -1

connection-fact-
ory.transaction-batch-size

Integer the batch size (in bytes)
between acknowledge-
ments when using a trans-
actional session

1024 * 1024

connection-fact-
ory.use-global-pools

Boolean whether or not to use a
global thread pool for
threads

true

queue Queue a queue to create and add
to JNDI

queue.name (attribute) String unique name of the queue

queue.entry String context where the queue
will be bound in JNDI
(there can be many)

queue.durable Boolean is the queue durable? true

Configuration Reference

178

Element Name Element Type Description Default

queue.filter String optional filter expression
for the queue

topic Topic a topic to create and add
to JNDI

topic.name (attribute) String unique name of the topic

topic.entry String context where the topic
will be bound in JNDI
(there can be many)

Configuration Reference

179

46
Project Information

The JBoss Messaging project page is here [http://www.jboss.org/jbossmessaging/]. You can download any releases
from there.

If you have any user questions please use our user forum
[http://www.jboss.org/index.html?module=bb&op=viewforum&f=238]

If you have development related questions, please use our development forum
[http://www.jboss.org/index.html?module=bb&op=viewforum&f=153]

Pop in and chat to us in our IRC channel [irc://irc.freenode.net:6667/jbossmessaging]

JBoss Messaging Subversion TRUNK is here [http://anonsvn.jboss.org/repos/messaging/trunk]

All our release tags are here [http://anonsvn.jboss.org/repos/messaging/tags]

Red Hat kindly employs developers to work full time on JBoss Messaging, the motley crew are:

• Tim Fox [http://jbossfox.blogspot.com] (project lead)

• Howard Gao

• Jeff Mesnil

• Clebert Suconic

• Andy Taylor

180

http://www.jboss.org/jbossmessaging/
http://www.jboss.org/index.html?module=bb&op=viewforum&f=238
http://www.jboss.org/index.html?module=bb&op=viewforum&f=153
irc://irc.freenode.net:6667/jbossmessaging
http://anonsvn.jboss.org/repos/messaging/trunk
http://anonsvn.jboss.org/repos/messaging/tags
http://jbossfox.blogspot.com

	JBoss Messaging 2.0 User Manual
	Table of Contents
	Chapter 1. Preface
	Chapter 2. Messaging Concepts
	2.1. Messaging Concepts
	2.2. Messaging styles
	2.2.1. The Message Queue Pattern
	2.2.2. The Publish-Subscribe Pattern

	2.3. Delivery guarantees
	2.4. Transactions
	2.5. Durability
	2.6. Messaging APIs and protocols
	2.6.1. Java Message Service (JMS)
	2.6.2. System specific APIs
	2.6.3. STOMP
	2.6.4. AMQP
	2.6.5. REST

	2.7. High Availability
	2.8. Clusters
	2.9. Bridges and routing

	Chapter 3. Architecture
	3.1. Core Architecture
	3.2. JBoss Messaging embedded in your own application
	3.3. JBoss Messaging integrated with a JEE application server
	3.4. JBoss Messaging stand-alone server

	Chapter 4. Using the Server
	4.1. Starting and Stopping the standalone server
	4.2. Server JVM settings
	4.3. Server classpath
	4.4. Library Path
	4.5. System properties
	4.6. Configuration files
	4.7. JBoss Microcontainer Beans File
	4.8. The main configuration file.

	Chapter 5. Using JMS
	5.1. A simple ordering system
	5.2. JMS Server Configuration
	5.3. JNDI configuration
	5.4. The code
	5.5. Directly instantiating JMS Resources without using JNDI
	5.6. Setting The Client ID
	5.7. Setting The Batch Size for DUPS_OK
	5.8. Setting The Transaction Batch Size

	Chapter 6. Using Core
	6.1. Core Messaging Concepts
	6.1.1. Message
	6.1.2. Address
	6.1.3. Queue
	6.1.4. ClientSessionFactory
	6.1.5. ClientSession
	6.1.6. ClientConsumer
	6.1.7. ClientProducer

	6.2. A simple example of using Core

	Chapter 7. Mapping JMS Concepts to the Core API
	Chapter 8. The Client Classpath
	8.1. Pure Core Client
	8.2. JMS Client
	8.3. JNDI

	Chapter 9. Examples
	9.1. JMS Examples
	9.1.1. Application-Layer Failover
	9.1.2. Automatic (Transparent) Failover
	9.1.3. Automatic Reconnect
	9.1.4. Browser
	9.1.5. Core Bridge Example
	9.1.6. Client Kickoff
	9.1.7. Client Side Load-Balancing
	9.1.8. Clustered Queue
	9.1.9. Clustered Standalone
	9.1.10. Clustered Topic
	9.1.11. Dead Letter
	9.1.12. Delayed Redelivery
	9.1.13. Divert
	9.1.14. Durable Subscription
	9.1.15. Embedded
	9.1.16. HTTP Transport
	9.1.17. Instantiate JMS Objects Directly
	9.1.18. Interceptor
	9.1.19. JAAS
	9.1.20. JMX Management
	9.1.21. Large Message
	9.1.22. Last-Value Queue
	9.1.23. Load Balanced Clustered Queue
	9.1.24. Management
	9.1.25. Management Notification
	9.1.26. Message Consumer Rate Limiting
	9.1.27. Message Counter
	9.1.28. Message Expiration
	9.1.29. Message Group
	9.1.30. Message Producer Rate Limiting
	9.1.31. Message Priority
	9.1.32. Message Redistribution
	9.1.33. No Consumer Buffering
	9.1.34. Paging
	9.1.35. Pre-Acknowledge
	9.1.36. Queue
	9.1.37. Queue Requestor
	9.1.38. Queue with Message Selector
	9.1.39. Request-Response
	9.1.40. Scheduled Message
	9.1.41. Security
	9.1.42. Send Acknowledgements
	9.1.43. Static Message Selector
	9.1.44. Static Message Selector Using JMS
	9.1.45. SSL Transport
	9.1.46. Symmetric Cluster
	9.1.47. Temporary Queue
	9.1.48. Topic
	9.1.49. Topic Hierarchy
	9.1.50. Topic Selector 1
	9.1.51. Topic Selector 2
	9.1.52. Transactional Session
	9.1.53. XA Heuristic
	9.1.54. XA Receive
	9.1.55. XA Send
	9.1.56. XA with Transaction Manager

	9.2. Core API Examples
	9.2.1. Embedded

	9.3. Java EE Examples
	9.3.1. EJB/JMS Transaction
	9.3.2. HAJNDI (High Availability)
	9.3.3. Resource Adapter Configuration
	9.3.4. JMS Bridge
	9.3.5. MDB (Message Driven Bean)
	9.3.6. Servlet Transport
	9.3.7. Servlet SSL Transport
	9.3.8. XA Recovery

	Chapter 10. Routing Messages With Wild Cards
	Chapter 11. Understanding the JBoss Messaging Wildcard Syntax
	Chapter 12. Filter Expressions
	Chapter 13. Persistence
	13.1. Configuring the bindings journal
	13.2. Configuring the message journal
	13.3. Installing AIO
	13.4. Configuring JBoss Messaging for Zero Persistence

	Chapter 14. Configuring the Transport
	14.1. Understanding Acceptors
	14.2. Understanding Connectors
	14.3. Configuring the transport directly from the client side.
	14.4. Configuring the Netty transport
	14.4.1. Configuring Netty TCP
	14.4.2. Configuring Netty SSL
	14.4.3. Configuring Netty HTTP
	14.4.4. Configuring Netty Servlet

	Chapter 15. Dead Connections and Session Multiplexing
	15.1. Cleaning up Dead Connection Resources on the Server
	15.2. Detecting failure from the client side.
	15.3. Session Multiplexing

	Chapter 16. Resource Manager Configuration
	Chapter 17. Flow Control
	17.1. Consumer Flow Control
	17.1.1. Window-Based Flow Control
	17.1.1.1. Using Core API
	17.1.1.2. Using JMS

	17.1.2. Rate limited flow control
	17.1.2.1. Using Core API
	17.1.2.2. Using JMS

	17.2. Producer flow control
	17.2.1. Window based flow control
	17.2.2. Rate limited flow control
	17.2.2.1. Using Core API
	17.2.2.2. Using JMS

	Chapter 18. Command Buffering
	Chapter 19. Guarantees of Transactional and Non-Transactional Sends and Asynchronous Send Acknowledgements
	19.1. Guarantees of Transaction Completion
	19.2. Guarantees of Non Transactional Message Sends
	19.3. Guarantees of Non Transactional Acknowledgements
	19.4. Asynchronous Send Acknowledgements
	19.4.1. Asynchronous Send Acknowledgements

	Chapter 20. Message Redelivery and Undelivered Messages
	20.1. Delayed Redelivery
	20.1.1. Configuring Delayed Redelivery
	20.1.2. Example

	20.2. Dead Letter Addresses
	20.2.1. Configuring Dead Letter Addresses
	20.2.2. Dead Letter Properties
	20.2.3. Example

	20.3. Delivery Count Persistence

	Chapter 21. Message Expiry
	21.1. Message Expiry
	21.2. Configuring Expiry Addresses
	21.3. Configuring The Expiry Reaper Thread
	21.4. Example

	Chapter 22. Large Messages
	22.1. Configuring the server
	22.2. Setting the limits
	22.2.1. Using Core API
	22.2.2. Using JMS

	22.3. Streaming large messages
	22.3.1. Streaming over Core API
	22.3.2. Streaming over JMS

	22.4. Streaming Alternative
	22.5. Other Types of Messages
	22.6. Resending a large message
	22.7. Large message example

	Chapter 23. Paging
	23.1. Page Files
	23.2. Global Paging Mode
	23.2.1. Configuration

	23.3. Address Paging Mode
	23.3.1. Configuration

	23.4. Caution with Addresses with Multiple Queues
	23.5. Example

	Chapter 24. Queue Attributes
	24.1. Predefined Queues
	24.2. Using the API
	24.3. Configuring Queues Via Address Settings

	Chapter 25. Scheduled Messages
	25.1. Scheduled Delivery Property
	25.2. Example

	Chapter 26. Last-Value Queues
	26.1. Configuring Last-Value Queues
	26.2. Using Last-Value Property
	26.3. Example

	Chapter 27. Message Grouping
	27.1. Using Core API
	27.2. Using JMS
	27.3. Example

	Chapter 28. Pre-Acknowledge Mode
	28.1. Using PRE_ACKNOWLEDGE
	28.2. Example

	Chapter 29. Management
	29.1. The Management API
	29.1.1. Core Management API
	29.1.1.1. Core Server Management
	29.1.1.2. Core Address Management
	29.1.1.3. Core Queue Management
	29.1.1.4. Other Core Resources Management

	29.1.2. JMS Management API
	29.1.2.1. JMS Server Management
	29.1.2.2. JMS ConnectionFactory Management
	29.1.2.3. JMS Queue Management
	29.1.2.4. JMS Topic Management

	29.2. Using Management Via JMX
	29.2.1. Configuring JMX
	29.2.1.1. MBeanServer configuration

	29.2.2. Example

	29.3. Using Management Via Core API
	29.3.1. Configuring Core Management

	29.4. Using Management Via JMS
	29.4.1. Configuring JMS Management
	29.4.2. Example

	29.5. Management Cluster Credentials
	29.6. Management Notifications
	29.6.1. JMX Notifications
	29.6.2. Core Messages Notifications
	29.6.2.1. Configuring The Core Management Notification Address

	29.6.3. JMS Messages Notifications
	29.6.4. Example

	29.7. Message Counters
	29.7.1. Configuring Message Counters
	29.7.2. Example

	Chapter 30. Security
	30.1. Role based security for addresses
	30.2. Secure Sockets Layer (SSL) Transport
	30.3. Basic user credentials
	30.4. Changing the security manager
	30.5. JAAS Security Manager
	30.5.1. Example

	30.6. JBoss AS Security Manager
	30.7. Changing the Management Password for Clustering

	Chapter 31. Application Server Integration and Java EE
	31.1. Configuring Message Driven Beans
	31.1.1. Using Container Managed Transactions
	31.1.2. Using Bean Managed Transactions
	31.1.3. Using Message Selectors with MDB's

	31.2. Sending Messages from within J2EE components
	31.3. Configuring the JCA Adapter
	31.3.1. Adapter Global properties
	31.3.2. Adapter Outbound configuration
	31.3.3. Adapter Inbound configuration

	31.4. High Availability JNDI (HA-JNDI)
	31.5. The JMS Bridge
	31.5.1. JMS Bridge Parameters
	31.5.2. Source and Target Connection Factories
	31.5.3. Source and Target Destination Factories
	31.5.4. Quality Of Service
	31.5.4.1. AT_MOST_ONCE
	31.5.4.2. DUPLICATES_OK
	31.5.4.3. ONCE_AND_ONLY_ONCE
	31.5.4.4. Example

	31.6. XA Recovery
	31.6.1. XA Recovery Configuration
	31.6.1.1. Configuration Settings

	31.6.2. Example

	Chapter 32. Client Reconnection
	Chapter 33. Diverting and Splitting Message Flows
	33.1. Exclusive Divert
	33.2. Non-exclusive Divert

	Chapter 34. Core Bridges
	34.1. Configuring Bridges

	Chapter 35. Duplicate Message Detection
	35.1. Using Duplicate Detection for Message Sending
	35.2. Configuring the Duplicate ID Cache
	35.3. Duplicate Detection and Bridges
	35.4. Duplicate Detection and Cluster Connections
	35.5. Duplicate Detection and Paging

	Chapter 36. Clusters
	36.1. Clusters Overview
	36.2. Server discovery
	36.2.1. Broadcast Groups
	36.2.2. Discovery Groups
	36.2.3. Defining Discovery Groups on the Server
	36.2.4. Discovery Groups on the Client Side
	36.2.4.1. Configuring client discovery using JMS
	36.2.4.2. Configuring client discovery using Core

	36.3. Server-Side Message Load Balancing
	36.3.1. Configuring Cluster Connections

	36.4. Client-Side Load balancing
	36.5. Specifying Members of a Cluster Explicitly
	36.5.1. Specify List of Servers on the Client Side
	36.5.1.1. Specifying List of Servers using JMS
	36.5.1.2. Specifying List of Servers using the Core API

	36.5.2. Specifying List of Servers to form a Cluster

	36.6. Message Redistribution
	36.7. Cluster topologies
	36.7.1. Symmetric cluster
	36.7.2. Chain cluster

	Chapter 37. High Availability and Failover
	37.1. Server replication
	37.1.1. Configuring live-backup pairs
	37.1.2. Synchronization of live-backup pairs
	37.1.3. Queue activation timeout

	37.2. Automatic client failover
	37.3. Application-level client failover

	Chapter 38. Libaio Native Libraries
	38.1. Compiling the native libraries
	38.1.1. Install requirements
	38.1.2. Invoking the compilation

	Chapter 39. Thread management
	39.1. Server-Side Thread Management
	39.1.1. Server Scheduled Thread Pool
	39.1.2. General Purpose Server Thread Pool
	39.1.3. Expiry Reaper Thread
	39.1.4. Asynchronous IO

	39.2. Client-Side Thread Management

	Chapter 40. Logging
	40.1. Log4j Configuration
	40.2. Logging With The JBoss Application Server

	Chapter 41. Embedding JBoss Messaging
	41.1. POJO instantiation
	41.2. Dependency Frameworks
	41.3. Connecting to the Embedded JBoss Messaging
	41.3.1. Core API
	41.3.2. JMS API

	41.4. JMS Embedding Example

	Chapter 42. Intercepting Operations
	42.1. Implementing The Interceptors
	42.2. Configuring The Interceptors
	42.3. Example

	Chapter 43. Interoperability
	43.1. Stomp and StompConnect
	43.2. AMQP
	43.3. REST

	Chapter 44. Performance Tuning
	44.1. Tuning the journal
	44.2. Tuning JMS
	44.3. Other Tunings
	44.4. Tuning Transport Settings
	44.5. Tuning the VM
	44.6. Avoiding Anti-Patterns

	Chapter 45. Configuration Reference
	45.1. Server Configuration
	45.1.1. jbm-configuration.xml
	45.1.2. jbm-jms.xml

	Chapter 46. Project Information

