JBoss Messaging 2.0 User Manual

Setting the Standard for High Performance Messaging

Table of Contents

O == o= PSSR 1
2. MESSAGING CONCEPLS ...eeeiueteieeeiittie e e ettt e e ettt e e atee e e e e s bt et e e e s bttt e e asb et e e e aanb et e e e anbb e e e e asbs e e e e annbeeeeeanbeeeeean 2
2.1. MESSAING CONCEPLSceveeieeeiitee e ettt e e et e e et e e e ek e e e e e e et e e s e e e e e s b e e e s ann e e e e e annrneeeaanrrneeean 2

A =SS o] e R Y =S RSP 2
2.2.1. The Message QUEUE PaILEIMcoiuiiiiiiiiiiee ettt e e e e 3

2.2.2. The Publish-SUBSCIIDE Paternooiiiiiiiieieiiie e eaaee e 3

2.3. DElIVENY QUANAINTEESeieeiieiiiiee ettt ettt e e et e e et e e ek e e e e e ettt e e e annb e e e e eanbeneeean 3

I - o 0] PP 4

R I TN - o 1 1 USRS 4

2.6. Messaging APIS@Nd PIrOLOCOIScoiuriieeiiiiiie ettt e e e nrre e 4
2.6.1. JaAvaMeSsage SEVICE (JMS) ...uuiiiiiiiie et e e e e e e e e e e et e e e e e e e e 4

2.6.2. SYStEM SPECITIC APIS ..o 5

2.6.3. STOMP ...ttt e ettt e e e ettt e e e e e st et e e e nbe e e e e e nae e e e e nnaeeeeennraeeeeans 5

2.8.4. AIMQP ...ttt ettt ettt ettt ettt ettt ettt ettt et eearaeas 5

B2 G T {3 1 SRR 5

2.7 High AVAIHTADIHTTY ..ottt et e e s sttt e e s sbb e e e e nnbeeeeeans 5

2 T LU PRSP 6

e I T (o 1S aTo I (o 1N (] oo PP 6

G I A (o 111 (= o 1 (= PSSP 7
I I o = o0 1= o [= SRR 7

3.2. JBoss Messaging embedded in your OWn appliCalioNocueeieiiiiiieeiiiiee i e e 9

3.3. JBoss Messaging integrated with a JEE appliCation SEIVErcooviiiiiiiiiieeee e 9

3.4. JIBOSS Messaging StaNG-alONE SEIVEYccieeee i i eee e e s ettt e e e e e s e e e e e e e e s e st e e e e e e e s s enanneees 10

4. USING TN SEIVEN .ottt e e et e e e bt e e e s b e e e e e e R bt e e e e ab e et e e e s b e e e e ann e e e e e e s 12
4.1. Starting and Stopping the StaNdalONe SENVEreeeiii e 12

4.2, SEIVEN IVIM SEIIINGS ..eeeieiiiiiie ettt et e e ekt e e e st bt e e e st e e e e st e e e s abn e e e nnnre s 12

4.3, SerVer Classpatilooovviiiii 13

A4, LIDrary Palhloooeiiiiie et s 13

IS Y= 1 g oo o= 1 (1= 13

ST o) 110 [V = (0] Iy 1] =SSR 14

4.7. JIBOSS MicrocontaiNer BEANS FIlEciiieiiiiiiiieiiie e e e e e e 15

4.8. Themain configuration fil€.ccuuiiiiiiie e e e 17

T U LS 1o I 1Y OO PPP PP TPPP 18
5.1. A SImMPle ordering SYStEIMccooeiiiiii e, 18

5.2. IMS Server CONFIGQUIALTONveieeeiiiiiee ettt e ettt e e et e e st e e s bt e e e e ssbe e e e s anbnneeeans 18

RGN 1B] I o{e] o1 o1 ¢= 1 o o RS 19

oI T I 0T oo o [PP PPT PRSP 20

5.5. Directly instantiating JM S Resources without USINg JNDIcoouiiiiiiiiiiieiieceeee e 21

5.6. SEtiNg ThE CHIENE ID ..oveeiiiieei it e e e e e s e e e e e e e e s s et b tar e e e e e e e e s saanreees 22

5.7. Setting The BatCh Size fOr DUPS _OKoiiiiiiiiiiiieiiiiee ettt 22

5.8. Setting The Transaction Batch Size ... 22

U L 1o [o PSPPI 23
6.1. COre MeSSagiNG CONCEPLSco.uvreeeeiiirieeaaiie e e et e e e st e e s e e e e st e e e st et e e e e e e e e anreeeenannnneeeans 23

JBoss Messaging 2.0 User Manual

G 2 o [0 = PP PRP PRSPPI 23
B.1.3. QUEUE ... 24
6.1.4. ClIentSESSIONFECIONYccoeeeeeeeee e 24
I N O 1= 0155\ o o PR PPRRRR 24
B.1.6. CHENLCONSUMETeiiiiiieee it ee e e e e e e e ettt e e e e e e e e s ettt eeeeeeessaannneeeeeeeaeeeaaansnnneeeaaaeeaaans 24
B.1.7. CHENIPIOTUCETeeiiiiiiiiie ettt et e e st e e e s b e e e e anbbe e e e s nnbneeeeans 25

6.2. A sSimple example Of USING COTEouiiiuiiiieiiiie et e e e e 25
7. Mapping IMS ConCeptSto the COr@ APLeeiieieeeee e a e e 26
8. The Client Classpatieiiiiiiiie e e e e e e st e e s abr e e e e s nnreeas 27
o U1 £ 0o (=X @1 T o P ESRTR 27
ST Y Y @1 1T= o APPSR OUPRRRRTPRR 27
ST 0 N1 LRSS 27
S T 1o = EPRPPPPEPPR 28
0.1 IMS EXBIMPIES ...ttt ettt ettt e et e e e h et e e e b et e e e e e e e e e e e e e eaas 28
9.1.1. Application-Layer FAIlOVELcoiiiiiiiiiiiieiiee e e e e e e e e e 28
9.1.2. Automatic (Transparent) FallOVESccueeiiiiiiiieeiiec e 28
9.1.3. AULOMELIC RECONNECTeeeiiiiiiiiiiee e e ettt e e e e e ettt e e e e e e e e e nnerneeeeaaeeeans 29

0. L, BIOW S i 29
9.1.5. Core Bridge EXamMPIEcooieeeee e a e 29
0.1.6. CHENt KICKOFTeiiiieiieiee et e e e e e e e s snbaeeeeans 29
9.1.7. Client Side Load-BalanCinNgcceeiiiiiiiieiiiiiieeiiee et 29
9.1.8. CIUSLErEd QUEUIE ..o 30
9.1.9. Clustered StANAIONEccoiiiiiiiiii e e e e e s s e e e e e e e s e s snnrareraaaeeeaaas 30
0.1.10. ClUSLEr€d TOPIC ..ceeeeeee e 30
O.1.11. DEAA LEEr ...ttt e e e et e e e e et e e e e e e e e e b e e e e anneaaean 30
0.1.12. Delayed REJEIIVEIYoeeieiiiiiie ettt e e e st e e e e s neae e e e enreaeeeansaeeeeans 30

S S B 1= o PSP PR OPPPRPTUPPRRN 30
0.1.14. DUrabl@ SUDSCIIPLIONceoiiiiiiieiiiiiie ettt a e e e e e e e e e 31
O.1.15. EMBDEAAEA ...ttt ettt e et e e e et e e e e ne e e e e e e e e e e nnraeeeean 31
O.1.16. HTTP TIANSPOITeeeeieieeeiiiiiiee et e e st e e e sttt e e e e e s s s e e e e e e e s s s nnbrnreeeaeeeanns 31
9.1.17. Instantiate IMS ObjeCtS DIreCtlycoooeeeeeeieee 31
0,018, INEEICEPLON oee e ——— 31
0.1.19. JA S et e e et e et —eeeantaeeeeatteeeeaatteeeeanttaeeearaeeaeans 31
9.1.20. IMX MANAGEIMENTuiiieiiieeeiiiiit e e e ettt r e s e e e e e et et r e s e e e e eeeaeraa s s eeeeeeeeetssaaaeeeaeeeneres 31
O.1.21. LArgE IMESSAORevvveeeiiiee ittt e e e e s e sttt e e e e e e st e et e e e e s s e e e e e e e e e e e e e e e a 31
0.1.22. Last-ValUB QUEUEcooeeeeeeeeeee e 32
9.1.23. Load Balanced Clustered QUEUEc.uuiieiiieeeeeiiiiiiiiee e e e e e siieee e e e e e e s sssnnraneeaaa e e e 32

S I V= =T = T | 32
9.1.25. Management NOtITICALIONeiiieiiiiiiiieeie e a e e e 32
9.1.26. Message Consumer Rate LiMITINGcvveeeiiiiriieiiiie e 32
0.0.27. MESSAGE COUNTEL ..iutuiieeeeeeeeetiie s e e e e e et ettt s e e e e et eeeaeta i a e s e e e e eeeeeeaa s s eeeeeeeeetssanseeeeeeennres 32
0.1.28. MESSA0E EXPITALIONeeieiiiiiiiee ittt e e e s s e e e e e e s snnneeeean 33
0.1.29. MESSAGE GGIOUP .evvvruunieeeeieeetttu e eeeeeeeeeattu s s e eeeeeeeeetana s s aeeeeeeessnnnseeeeeeenssnsnnaeeeeeennnnns 33
9.1.30. Message Producer Rate LiMiItiNGcoiveeeeeiiiiieeiiiiee et sinee e 33
0.1.31. MESSAE PriONitY ..cceeeeeeeeeeee e 33
9.1.32. Message RedistriBULIONoeviiiieee e 33
9.1.33. NO CONSUMES BUFFEITNGeeeeeeiiiiiie ettt e e e 34
SN B = o 1 oo PP PPPRRR 34

9.1.35. Pre-ACKNOWIEAGEeeeeeiiiiiiie ittt e e e e e 34

JBoss Messaging 2.0 User Manual

L0 I G G T 11 1SRN 34

9.1.37. QUEUE REUUESLONceeiiieiiiiiitieiee e e e e s sttt ee e e e e e st e e e e e e e s s s e e e e e e e s s s nnnrnreeeeeeeaaas 34

9.1.38. Queue With Message SEIECLOTccooeeeeeie i 34

9.1.39. REQUESE-RESPONSEceiiiiiiiiiiiteiee ettt e e e e s e e e e e s s s s abbbrreeeaeeeaaa 34

0.1.40. SChedUIEO MESSAQEccee e oo 35

SN = ot U 4 Y PP PPRSRRR 35

9.1.42. Send ACKNOWIEAGEMENLSoiiiiiiiiieeiiiiee e e e e 35

0.1.43. Static MESSAE SEIECIONt e e e e e e s e e e e e e e 35

9.1.44. Static Message SEleCtor USING IMSoiiiiiiiiieeeeiiet e 35

S I ST I I =10 [0 P 35

0.1.46. SYMMELITC ClIUSLEYveiieiiiiiie ettt e e e e st e e s e e e e e snbaeeeeans 35

0.1.47. TEMPOIary QUEUEceeeiieeeeeeee e 35

SN T o o PP PPPRRRR 35

9.1.49. TOPIC HIBIAICHY ...ttt e e e e e e e e 36

9.1.50. TOPIC SEIECION L ...viiiieiiiee ittt e e e e e e e e e e s et e e e e e e e e s e s satnrnreeeaeeaeaas 36

O.1.51. TOPIC SEIECION 2 ...ttt ettt e e et e e s bbb e e e e b e e e e e anbneeenans 36

9.1.52. TranSaCtioNal SESSIONcoiiiieiiiiiiie e ettt e e e e e e s e et e e e e e e s e e snnbeeeeeaaeeeaans 36

0.1.53. XA HEUISHIC .ttt e e et e e e e e s s et e e e e e e e s e s snnnraaeeaaaeenaaas 36

O.1.54. XA RECEIVEeeiiie ettt ettt ettt e e ettt e e e st e e e e st e e e e e st e e e e antteeeeaansaeeeeannseaeeeansneenaans 36

O.1.55. XA SEINA ..ottt b e e e b e e e b e e e e anbaeeeaan 36

9.1.56. XA With TransaCtion M NGOEYcccouiumiieiiiieieeiiiiee e e e e e 36

S A 00 () o B T 0 o] =PRSS 36
o I 10107 [0 o PR OUPRRPRRPRR 37

9.3. JAVAEE EXaMPIES ... 37
0.3.1. EIB/IMS TraNSACtION ..coeieeiiiiiiiieiie e e e e ettt ee e e e e e e et e e e e e e s s et a e e e e e e e s annnsrnneeaaaeeeaaas 37

9.3.2. HAINDI (High AVAIEDITILY) ..eeeieiiiiiieeeiiiie et e e snnaee e 37

9.3.3. Resource Adapter CONfIQUIELIONcociiiieiiie e e e e e e e e s e srarere e e e e e e e 37

0.3.4 IMS BIIAJE ..ottt ettt et e e et e e e e e e e e e e e 37

9.3.5. MDB (Message DIiVEN BEAN)cciiiiiiiiiiiiiiiiicce ettt e e e saarare e e e e e e 37

0.3.6. SEIVIEL TTBNSPOMTeeiiiieiie ettt et e e st e e e e s e e e e e b e e e e e anbaeeeean 37

0.3.7. Servlet SSL TranSportcoooeieceee e 37

0.3.8. XA RECOVEIY i 37

10. Routing Messages With Wild Cardseeiiiiiiieiiiie et 38
11. Understanding the JBoss Messaging Wildcard SYNLaXccooiiiiiiieiiiieeeiiiciiiiee e ceiiieeee e e e e 39
12, FIIEI EXPIESSIONSceeeiitieeeeiite e e ettt e ekttt e e ekttt e e e ekttt e e e sk e e e e 4 sttt e e aab e et e e e aa b e e e e e e s b e e e e e annnn e e e e nnbnneeens 40
T o = S T (= SRR 41
13.1. Configuring the DINAINGS JOUN@lcoiuiiiieiiii e 42

13.2. Configuring the MESSAJE JOUIMELuui e ana s aaanasnsnnnsssnnnsnnnnnnnnns 43

GG T 1 a1 = g To 2 O SRR 45
13.4. Configuring JBoss Messaging fOr Zero PErSISIENCEccoiuuiiieiiiiiieeeieee e 45

14, Configuring the TIANSPOITviieiiiiee et cci e e e e e e e e e e e s e et e e e e e eeesssssabarereeeaeesansnssbnreeeaeeeaaans 46
14.1. UNAErstanding ACCEPLONSveieeiitieeeeiieiee e sttt e e et e e s st e e e e s e e e s st e e e s asnr e e e s anbneeesanrnneeeans 46

14.2. Understanding CONNECLONSuuuui s sann s annsnsnsnnnsssnnnsnnnnnnnnns a7

14.3. Configuring the transport directly from the client Side.ooooiiiiiiiii e 47

14.4. Configuring the NEtty tranSPOMooiieiiiiiie et e e e e e e e e e e e e e e eneneeeeeeeas 48
14.4.1. ConfiguriNg NELLY TCPuviieiiie et e e e e e s s e e e e e s e ennnnees 48

14.4.2. Configuring NELtY SSLooiiiiiiii e 50

14.4.3. Configuring NELtY HTTPuuiiiiiiii et e s e e e e e eannnes 50

14.4.4. Configuring NEttY SENVIELcoouiiiiiiiie e 50

JBoss Messaging 2.0 User Manual

15. Dead Connections and Session MUITIPIEXINGveveeeiiiiiiiiiiee e e s e e e e e e e 53
15.1. Cleaning up Dead Connection ResoUrceS 0N the SEIVEScoooiiiiieiiiiiiee e 53
15.2. Detecting failure from the client SIde. ... 54
15.3. SeSSION MUITIPIEXING ...veeeieiiiiiie ettt e et e e s s e e e s e e e e e s nnbneeeeans 55

16. Resource Manager CONFIQUILTONuuuiuiii s a s nsasnsasasssssnsnnnsnnnsnnnnnnnnns 56

L7, FIOW CONEIOL .ttt ettt et e ettt e e e sttt e e e ekttt e e e a b b e e e e esb et e e e ennbe e e e e nnbneeeeans 57
17.2. ConsUMEr FIOW CONIOIeeeeiiieeee et e e e e e e e r e e e e e s s sneb e e e e e e e e s snnnnrreeeeeeas 57

17.1.1. Window-Based FIOW CONIOlcooiiiiiiieiiiiiie e naee e 57
17.1. 1.2 USING COME AP ..ottt 58
I 0 2 O o N Y SRR 58

17.1.2. Rate limited fIOW CONIOIcoiieeiiiiiiei e e e e 58
T I U £ ol] = . S 59
17.1.2.2. USING IMS oottt ettt ettt e et e e e et e e e s b e e e e e 59

17.2. Producer FIOW CONIOL ...t e e et e e e e e e e s s st e e e e e e e e snnnnereeeeeeas 59

17.2.1. Window based fIOW CONEIOLeiiiiiiiiie e e naee e 59

17.2.2. Rate limited fIOW CONIOIcoiieeiiiiiiiei e e e e e e neees 60
17.2.2.1. USING COME AP . annnannnnsnsnnnnnnnnnnnnnnns 60
17222 USINGIMS .ottt e e e e e e e et e e e e e an e e e e s areeaeeannes 60

18. COMMEAN BUFFEITNG ...eeeiieeeiiitiie ettt e e e e e e ettt e e e e e e e e e e nabn e e e eaaeesaansnaneeeeaaeeaans 61

19. Guarantees of Transactional and Non-Transactional Sends and Asynchronous Send Acknowledgements

... 62
19.1. Guarantees of Transaction COMPIELIONcooeeiiiiiiiiiiiiee e e 62
19.2. Guarantees of Non Transactional MeSSage SENASccoviiiiiieiiiiiie e 62
19.3. Guarantees of Non Transactional Acknowledgementscccccceciiiiiiiii e 63
19.4. Asynchronous Send ACKNOWIEAGEMENTSc.uvrieiiiiiiieiiiiiee e 63
19.4.1. Asynchronous Send ACKNOWIEAGEMENTSoeeeiiiiriieiiiii e 64
20. Message Redelivery and Undelivered MESSAQESocuvviiiiiiie et ee e et e e e e e e s etranae e e e e e e 65
20.1. Delayed REJEIIVEIY ...ttt e et e e e e e s s e e s nnnreeeeans 65
20.1.1. Configuring Delayed REAEIIVENY ..ot 65
20.1.2. EXAIMPIE ...t e e e e 66
20.2. DEad LEtter AQUIESSESoeeeiiieieiiiee e ettt e e e e e ettt e e e e e e e sttt e e e e e e e e aaannnaneeeeaeeeeeannnneees 66
20.2.1. Configuring Dead Letter AAArESSESc.uvviiiiiiie et e e e e e e e e 66
20.2.2. Dead LEer PrOPEITIESooeeeiieiiiiiie ettt e e nnnee e 66
20.2.3. EXAMPIE oot e e e e e e e e e e e s a it r— e e aaaeaaaaas 67
20.3. DEliVery COUNE PEISISLENCEcoiiiiiiiiieiiiiiie ettt e st e s e e e s e e e s snnneeeans 67
20, MEBSSA0E EXPITY ittt ettt e e e e e e et e e e e e e e e e s et —— e e e eeeeeeaa b b r——eeeaeeeaaarrrarrraaaeeaaaas 68
211 MESSAgE EXPITY ...eieeeeiiieie ettt ettt ettt e et e e et e et e e e e e e et e e e nrneeeeans 68
21.2. Configuring EXPiry AdAreSSeSccoooveeei e 68
21.3. Configuring The Expiry Reaper Threadcoooiiiiiiiiiiiiiiie e 69
204, EXAIMPIE ..ttt e e e et e e e e n e e 69
22, LalgE MESSAMES ...oiieeeiiiiiii e e ettt ettt et e e e et e ettt e e e e e et e ettt b e e e e e et e ettt e r e e e et e e eetaraeeeeeeee et aaaaaeenrres 70
22.1. CONfIQUIING the SEIVET ...t e et e e e s e e e s e s e e e s anbneeeeans 70
22.2. Settingthelimits ... 70
22.2.1. USING COTE AP .ottt ettt e e e e et e e e b e e e e anbneeeean 71
22.2.2. USINGIMS .ttt e et e e e ettt e e e sttt e e e e nt e e e e e nnt e e e e nnnte e e e anreeeeeanraeeeeans 71
22.3. Streaming |arge MESSAGESccuvvrviiiieeeeiiiitiirereeeee e s asstttra et aaeeesssaataaereeaaessaassstaaeraaeeessannreees 71
22.3.1. Streaming OVEr COr€ APl ..ot 72

22.3.2. SIreaming OVEr JMS ..ot e e e e s e e e e e e e e s e et rareeaaaeeaaaa 72

22.4. Sreaming AlTEINALIVEcooiiiiii et e e e e e e e e e e e e s abae e e 73

JBoss Messaging 2.0 User Manual

22.5. Other TYPES Of MESSBOEScccuiiiiiiiie ettt e e e e e e e e e e s st e e e e e e e e s s st b ba e e e e e e e e s s eaanreees 74

22.6. ReSeNding @ largE MESSAGEeveieiiiiiee ittt e ettt e e st e e e e e s e e e e s abneeeeans 74

22.7. Largemessage eXample ..o 74

PG = o] 0o PSPPI 75
P I = o T SRS 75

23.2. Global Paging MOOEcoiieeiii ittt e e e e e e e e e s et e e e e e e e e s enanreees 75
23.2. 1. CONFIGUIALTONtieieeiiieie ettt e e e e e e e e e e st e e e s s e e e e e anne e e e e anrneeeeans 75

23.3. AdAress Paging MOOEcooiiiiiiiiiiiee et e e e e e e e e e s e et e e e e e e e s e e nanraees 76
23.3. 1. CONFIGUIALTONeteieeiiiiiee ettt e et e e et e e e e sabb e e e e e sb e e e e e asbe e e e s anbneeeeans 76

23.4. Caution with Addresses with Multiple QUEUEScoooeiiiiiiii e, 77

235, EXAIMPIE . e e e et n e e 77

24. QUEUB ALLIIDULES ... 78
24.1. Predefined QUELESooeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 78
24.2. USING TNE AP ettt e e 79
24.3. Configuring QUEUES Via Address SEHINGSvvveiiieeeiiiiiiiieiee e e s e e e s e e e e e eenneees 79

25. SCNEAUIEA IMIESSAOEScoieieeee ettt ettt e ettt e e e et e e e st e e e et e e e ennbe e e e e anbne e e e annreeas 81
25.1. Scheduled Delivery PrOPErtYccoooiiiiiee e 81

25,2, EXAIMPIE .t e e et e e abre e e e 81

26. Last-ValUE QUEUESccoeeeee e 82
26.1. Configuring Last-ValU€ QUEUEScceeiiiiuiiiiiiiie e e e e ettt e e e e e e e s seitaae e e e e e e e s s st e e e aae e s s ennnrnees 82

26.2. USING LaSt-ValUE PrOPEITYeeeeiiiiiiieeiiiee ettt ettt e s e e e s e e e 82

26.3. EXAIMPIE oeeeiiiiiei it e e e e e e e e e e e —r e e e e e e e e e atr———rraaaeeesaanrrres 83

27. M ESSAGE GIOUDING -..veeeeiutieteeaaiiteeeeatteeeesaatse e e e e assb e e e e e s be e e e e aaae et e e e aabb et e e e st e e e e e aasbb e e e e ansbe e e e e anbneeeeannreeas 84
27.1.USINGCOrE AP ... 84
27.2. USING IMS .ottt e ookt e e et e e e Rt e e e b et e e e et e e e e b et e e e abneeeeaas 84
27.3. EXAIMPIE . e e 85

28. Pre-ACKNOWIEAGE MOUE ...ttt e e e e e e e e e e e s e et e e e e e e e s s s ensbbnaeeeaeeeeaans 86
28.1. USiNg PRE_ACKNOWLEDGEcoiiiiiiiiee ittt et e et e e e asnsaae e e annsaeeessnneeaeans 86
28.2. EXAIMPIE oeeeiiiiiei it e e e e e e e e e e e — e e e e e e e e aaara———rraaaeeaaaanrrres 87

A Y =gt 1= 01T o PP TP PP PPPP PR PPPPPPPPPPTR 88
20.1. TheManagement APl ... 88
20.1.1. Core Management AP ... 89

29.1.1.1. Core Server ManagemENLceeeeeriiirimrrreeeeeeeeesssinrrrreeee e s s s s e e e e e e s annnnnes 89

29.1.1.2. Core Address Managementeeeeiiiciiiieieeeee e e e esiitire e e e e e e s st e e e e e e e s s eaneeees 89

29.1.1.3. Core QUEUE MaNAgEMENLeeeiiieeeiiiirrieeereeeeesssinrr e e e e e s s s sannr e e e e e e e s s annnnnes 90

29.1.1.4. Other Core Resources Managementeeeeeeeeeiiiiiiiieeeee e e eciireeee e e e e 91

29.1.2. IMS Management AP ... 92

29.1.2.1. IMS Server ManagemENtcoieeeeeieeeiiies s e e e eeeets s s e e e e e e et s s e e e e e e e eananan e e e e 92

29.1.2.2. IMS ConnectionFactory Managementc.eeevviiciiiieieeeeesscciiiieeer e e e e e 92

29.1.2.3. IMS QUEUE MBNAGEIMENLvreeiiiieeeiiinrrie e e e e e e e e e e e e e e aennnnes 93

29.1.2.4. IMSTOPIC MANAQEMENLvviiiiiieeeee it e e et e e e e e e et e e e e e e e s e eanneees 9

29.2. USINg MaNagemMENTt VIAJIMX ...oooiiiiiieiiiiii ettt e s e e e s nnnneeeeans 9
20.2.1. Configuring IMX ..o 95

29.2.1.1. MBeanServer CONfIGUIALTIONuviieiiiiieeeiiieieeseiiee e et e s s e snnae e e 95

29.2.2. EXBIMPIE .ottt e et e e e e et e e e e e e e e e ereaaaeeaaaas 95

29.3. Using Management VIiaCor@ APlooo oottt e e e 95
29.3.1. Configuring Core ManaQEMENTcoouereeriiirieeaiiree e et e e e e e e s e e e e snneee e 96

29.4. Using Management VIAJMSooviiiiiie oottt e et e e e e e e et e e e e e e e s annnees 97
29.4.1. Configuring IMS MaNaQEMENLcceeiiuririeiiiiieee et e e e et e e et e e s e e e snnr e e e s snbneeeeans 98

Y

JBoss Messaging 2.0 User Manual

290.4.2. EXAMPIE oottt e e e e e e e e e e s s a e aaaaeaaaaas 98

29.5. Management Cluster CredentialSc.ocveieeiiiiieiiiiiiee e 98

29.6. Management NOtITICALIONScoooeeiiiii i 99
29.6.1. IMX NOUTFICAHONS ..veeeiiieeiiiiiiiiei et s e e e e e s s e e e e e e e s e s snenrareeaaaeesaaas 99

29.6.2. Core Messages NOtIfiCalionsScoooeeeieii i, 99

29.6.2.1. Configuring The Core Management Notification Address...........ccccceevveeeeiiinnnnee, 99

29.6.3. IMS MeSSagES NOLITICHONSccouvveieeiiiieie et e e 100

20.6.4. EXAIMPIE ...t e e e as 100

29.7. MESSAGE COUNLENSveeetiieeeiiiiittee ittt e e e s e sttt e e e e e s s bt be et e e e e e s e s st b b e e e e e e e e e s s annnbsreeeeaeesaannnnnes 100
29.7.1. Configuring Message COUNLEN'Sccoeeeeeeei e 101

20.7.2. EXAIMPIE ... 102

0= 1 Y/ SRR 103
30.1. Role based Security fOr aOrESSESceiiieiiiiiiiiiiiie e e e e e e e e e e e e e e 103

30.2. Secure SocketS Layer (SSL) TranSPONtveveeiiiiieeeiirieee ettt 105

30.3. BASIC USEr CrEOENTIAISiveiiieiiiiiie ettt e et e e s sn e e e e nnn e e e e enees 105

30.4. Changing the SECUIMTY MANAGETcoiuuiieeiiiiiie ettt e et e e anne e e eaees 105

30.5. JAAS SECUNLY MBNBOENeeieiiiiiieeiiiiie e e ittt e e asteeeeessstee e e s sstbe e e e s sssaeeesansbaeeesansseeeeaannneeeeannes 106
S0.5. 1. EXAIMPIE ... 107

30.6. JIBOSS AS SECUNLY IMBNAGEN ... iieeiieeeeeee e ettt e e e e e e ettt e e e e e e e s ettt e e e e e e e e e eannnneneeeeaaeeaans 107
30.7. Changing the Management Password for CIUSLEINGcccvveveeiieeiiiiiiiiieice e 107

31. Application Server Integration and JAVAEEc.oooiiiiiiii i 108
31.1. Configuring Message DIiVEN BEANSooccuiiiiiiie ettt e et e e e etraaae e e e e e e 108
31.1.1. Using Container Managed TranSaClioNScueveeiiiiieieiieiee et 108

31.1.2. Using Bean Managed TranSaCtiONScceeveveieiiieieeeeeieeeeeeeeeeeeeeeeeeeeeseeeeeseseseeeeeeeeeees 109

31.1.3. Using Message Selectors With MDB'Sccooiiiiiiiiiiiiec e 110

31.2. Sending Messages from within J2EE COMPONENTSvvveeiiiiiiieiiieee e 111

31.3. Configuring the JCA AGADLEToviiiiiii e e s e e e e e s e et rreeeeaeeeaaas 112
31.3.1. Adapter Global PrOPEITIESooiiiiiiieeeiie et 113

31.3.2. Adapter Outbound CONfIQUIatioNcociiiiiiiiei e 115

31.3.3. Adapter INbouNd CONFIQUIBLIONvveeiiiiiiie et 116

31.4. High Availability INDI (HA-=INDI)ooiieiiieiiee e e e e e e s 116

315, TREIMS BIIAYEueviieiiiiie ettt e e r e e e e s e e et e e e e e e e s s saataaeeeeaeeseannnneees 117
31.5.1. IMS Bridge Pal@MELEN'Sc.uiiieiiiiiieeeiiiiee ettt e e e e e 119

31.5.2. Source and Target CoNNECtion FaCtOreseeeiiieiiiiiiiiiiecce e 122

31.5.3. Source and Target Destination FaCIONESccuvviieiiiiiee e 122

3L5.4. QUAITY Of SEIVICE ...uviiiiiiii e e e e e e e e s et b raeeeeaas 122

31.5.4.1. AT_MOST_ONCEooiuiveeeeirereeeeeieeesesseeeses s esses s aesesennenee s senaneeens 122

31.5.4.2. DUPLICATES OK ..otiiiiiiiiiie e et e sttt e stee e st e e s ssaee e e annteeeeesnnseeeeannneeeas 122

31.5.4.3. ONCE_AND_ONLY_ONCEcctiiiiiiiieiiiiiie ettt ee s e 122

3BL.5.4. 4. EXAMPIE «.eeeeieeeiee ettt e e e e naee s 123

G I ST €N = o0, V= YRR 123
31.6.1. XA Recovery COnfigUIaLIONccuueeeiiiieiieiiiieieeesiieee e s e s e e s e e enee e e e 123

31.6.1.1. Configuration SELtINGScceviiiiiiiiiiii e ee e 124

31.6.2. EXAIMPIE ... 125

1Y O 11 o (oo a0 ou i o] o 1SR 126
33. Diverting and Splitting MeSSage FIOWScceuiiiiiiie et e et e e 128
G I I (e LU S A= I o PSSR 128

33.2. NON-EXCIUSIVE DIVENT ..ttt ettt e e s et e e s et e e e e nnnne e e e enees 129

A 000 (=] =1 o (o= ST PP PPPRP 130

Vii

JBoss Messaging 2.0 User Manual

34.1. ConfiguIINg BIIAGESuvviiiiie ettt e e e e e e e e s et e e e e e e e e e e e natbrereeeaaeeaan 130

35. DUplicate MESSAgE DELECTIONviieiiiiiie ettt e e e et r e e s st e e e s annne e e e e nees 134
35.1. Using Duplicate Detection for Message SeNdinNgccevvvvveveeiieiiieeeeeeceeeeceeeeeeeeeeeeeeeeee e 134

35.2. Configuring the DUpliCate ID CaChEuvviiiiiiiieeeeee e 135
35.3. Duplicate Detection and BIiAQESoeiiieiiiiiiiiiiieie et e et e e e e e e e ieeee e e e e e e 136
35.4. Duplicate Detection and Cluster CONNECLIONScceeeeiiiiiiiieiieeee e e s e et e e e e e s esrraee e e e e e e e 136
35.5. Duplicate DeteCtion @nd PagINGeeeeiiirriieiiiie e e s e e e e 136

ST O 1 = £ SRR 137
36.1. ClUSLEIS OVEIVIEWeeiiieieiiie e e s s ettt e e e e e e s sttt eeee e e e s st aaeeeaaeeess s sstsaneeeaeeessnnnssnnneeeaeeesans 137
IS < A< o (1o o< Y 137
36.2.1. BrOAOCaSt GIOUPDSvveieeiiiieeeeiiteie e sttt e e sttt e e ettt e et e e e et e e e s e st e e e anbee e e e e nnnneeas 138

36.2.2. DISCOVENY GIOUDSevteeeeeeaeeeiaaitteeeeeaaeesaaanteteeeeaaeesaaaseeeeeeeaaeessaannseseeeaaeessaannsnneneeeens 139

36.2.3. Defining Discovery Groups 0N the SEIVErcciieei i 139

36.2.4. Discovery Groups on the Client Sideovveiiiiiiiiiiiec e 140

36.2.4.1. Configuring client discovery using JMScoooiieiiiiiiiiiiiereee e 140

36.2.4.2. Configuring client discovery USING COeevviiiiiieeiiiiiiee e 140

36.3. Server-Side Message Load BalanCinNgcoovvviiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e ee e ee e e e e e e ee e e e e eeeeee e 141
36.3.1. Configuring ClUStEr CONNECLIONSccoiuviiiieiiiiiee ettt et 141

36.4. Client-Side Load DalanCingcc.uueiiiiiieeeiiie et ee e e e et e e e e e e s e e e eaeeeaan 143
36.5. Specifying Members of a Cluster EXPlICItIYovveiiieiiiiiieee e 144
36.5.1. Specify List of Serverson the Client Sidec..ovviiiiiiiiiiii e 144

36.5.1.1. Specifying List of Serversusing JMScccoeieiiie e 145

36.5.1.2. Specifying List of Serversusing the Core APlooveiiiiiiiiiiiice e 145

36.5.2. Specifying List of ServerstoformaClusteroovvvvviiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee 146

36.6. Message ReiSIIIDULTIONuiiiiiiiiie e 146
36.7. CIUSLEr tOPOIOTIES ...t ettt ettt e e e e e e et e e e e e e e e e e e e e e ennes 147
36.7. 1. SYMIMELIIC CIUSLETuviieiieieee i i ettt e e e e s e e e e e e s e s e e e e e e s s s b b e e e e e e e e s santrreneeeeas 147

T A @ = g ot 1< RS 148

37. High Availability and FallOVEruvieiiiiiii e e e et e e e as 149
7.0, SEIVES TEPIICALIONeeieiiiieiee ettt e et e e e et e e e et e e e e annn e e e e e nnes 149
37.1.1. Configuring live-baCKup PaITSccevviiiiiiiiiiiiieeeeeeeeeeeeeeeeeee et 149

37.1.2. Synchronization of live-baCkup PaITScc.vveieiiieeiiiiieeee e 150

37.1.3. Queue aCtivation IMEOULuueieiiiee e e e e e e e e e e e neeeeeeeeeas 150

37.2. AULOMELIC ClIENE FAITOVET ...eiiiiiiiiie e e e nees 150
37.3. Application-level Client fAIlOVErooiiiiiiiiei e 151

38. LiDaIO NGLIVE LIDIAITES ...ttt et e e et e e e e st e e e enn e e e e nnnaeeeeenees 152
38.1. Compiling the NatiVe lIDrarieSoocuiiiiii e 152
1S T I I 1 g =0 O T =0T £ 152

38.1.2. Invoking the COmMPIlationeeeeiieeiiiiiieeee e 153

39. Thread MANAGEIMENTcoiiiiie et e et e s e e e e e e b e e e e s b e e e e e asn e e e e e annn e e e e annes 154
39.1. Server-Side Thread ManagemeEntooooiiiiiiiiiiiiee e e e e e e e e e e e e 154
39.1.1. Server Scheduled Thread POOIcooviiiiiiiiiiiiee e 154

39.1.2. General Purpose Server Thread POO0locovvvvviiiiiiiiiiiciieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 154

39.1.3. EXpiry REAPEN TIIEAAciiuiiiiiieiiiie ettt 155

G T I A =V T 0 T U 0 L 155

39.2. Client-Side Thread ManaQEmMENTcoiieiiiiiiiiiiiiee e r e e e e e s s st e e e e e e e s e sstraneeeeaaeeaans 155

LR oo o1 o PP PP T PPPRP 157
210 oo 7 TR @Co 01 1To U1 = (] o] o [P PURSPPR 157
40.2. Logging With The JBoSS APPIiCaLION SEIVESoeiiiiiiiiieeiieee e 157

viii

JBoss Messaging 2.0 User Manual

41. Embedding JBOSS MESSAGINGcccuvvreieiieeeeiiiiititeeeee e e s s eettreeeeeeeesssstabaeeeeeeeesssastaaeeeeaeessaannrarereeeens 158
I = O @ I | 1= 1 (=1 o OSSR 158
41.2. DependenCy FramEWOIKSooviiiiiiiiiiieeeeeee ettt e et eeeeeeeees 159
41.3. Connecting to the Embedded JBOSS MESSAJINGceeiiirriiiiiiiiieeiiiiieeeeiieee et e e e e 160

I 0 N 0 = A . OSSPSR 160
A1.3.2. IMS AP e e e nees 160
41.4. IMS Embedding EXaMPIE ..ottt 161

42. INtErcePting OPEIAtiONSceeiiieeiiiiiieeee et e e e e et e e e e e e e e e e e e e e e e e s st r e e e e eeeessaaataaereeaeeseaansarereeeeas 162
42.1. Implementing The TNEENCEPIONSciieiiieei et e e e e aees 162
42.2. Configuring The INTEICEPLOIS ...ooviviiiiieiiieeeeeeeeeee ettt e e e e e e e e e e e e e e e e eeeeeees 162
42.3. EXAIMPIE ettt e e e e e na e nnes 162

B g1 (0] 1< =T Y/ SR 164
43.1. Stomp and SEOMPCONNECEocceiiiiieeeee e e e s e r e e e e e e s e e e e e e e e s e assatbrareeeaeeeaaans 164
G B AN 1Y | PSSR 164
R G T {1 RSP PPR 164

44, PErfOIMANCE TUNMING ...veieeiitieeeeiiteeee ettt e e et e e e asse e e e s asse e e e e e asbe e e e e e sbe e e e e anb b e e e e aasbee e e e anbb e e e e aannneeeeanees 165
7t T I o 1 Vo 1 L= oL g 165
4.2, TUNING JMS .ottt ettt e e e ekttt e e e a bttt e e e s bt e e e e abe e e e e anbbe e e e e anbb e e e e ennes 165
T I @ 1 1 S W (oo OSSR 166
44.4. TUNING TranSPOrt SEINGS ...eeeeei ittt e e e e e e e e e s s st rr e e e e e e e s s asnatnraeeeeaeeeaans 166
445, TUNING TNE VM ...ttt et e e et e e e e et e e e e e e e e ennes 167
44.6. AVOIdiNg ANLI-PaternSccooiiiiiiieiii e e e e aa e e 167

45, Configuration REFEIENCEcoiiiiiiiie ittt e e et e e e e et e e e e annbe e e e e nees 169
ST IS = A= g @)1 o U= £ o o 169

45.1.1. jbmM-configuratioN. XMlcoooiiiiiieiiiie e 169
LT 2 1 o o 0 1S3 RS 176
LT = Co 1= ox g o1 7= o RSO 180

Preface

The goal of JBoss Messaging is simple and uncompromising; to bring unrivalled levels of performance and reliab-
ility to messaging, and to be the fastest, best featured and most scal able multi-protocol messaging system.

Why use JBoss Messaging? Here are just afew of the reasons:

e 100% open source software.

» Written in Java. Runs on any platform with a J2SE 5.0 JDK, that's everything from Windows desktops to IBM
mainframes.

» Superb performance. Our class beating high performance journal provides persistent messaging performance at
rates normally seen for non persistent messaging, our non persistent messaging performance rocks the boat too.

» Full feature set. All the features you'd expect in any serious messaging system, and others you won't find any-
where else.

» Elegant POJO based design with minimal third party dependencies. Run JBoss Messaging stand-alone, run it in
integrated in your favourite JEE application server, or run it embedded inside your own product.

» Seamless high availabilty. We provide server replication and completely transparent client failover so you don't
have to worry about coding your client specially for an HA environment.

» Hugely flexible clustering. Create clusters of servers that know how to load balance messages. Link geograph-
ically distributed clusters over unreliable connections to form a global network. Configure routing of messages
in ahighly flexible way.

Messaging Concepts

JBoss Messaging is an asynchronous messaging system, an example of Message Oriented Middleware
[http://en.wikipedia.org/wiki/Message oriented middleware] , well just call them messaging systems in the re-
mainder of this book.

WEell first present a brief overview of what kind of things messaging systems do and and where they're useful, and
the kind of concepts you'll hear about in the messaging world.

If you're already familiar with what a messaging system is and what it's capable of, then you can skip this chapter.

2.1. Messaging Concepts

Messaging systems allow you to loosely couple heteregenous systems together, whilst typically providing reliabil-
ity, transactions, and many other features.

Unlike systems based on a Remote Procedure Call [http://en.wikipedia.org/wiki/Remote_procedure_call] (RPC)
pattern, messaging systems primarily use an asynchronous message passing pattern with no tight relationship
between requests and responses. Most messaging systems also support a request-response mode but this is not a
primary feature of messaging systems.

Designing systems to be asynchronous from end-to-end allows you to really take advantage of your hardware re-
sources, minimizing the amount of threads blocking on 1O operations, and to use your network bandwidth to its full
capacity. With an RPC approach you have to wait for a response for each request you make so are limited by the
network round trip time, or latency of your network. With an asynchronous system you can pipeline flows of mes-
sages in different directions, so are limited by the network bandwidth not the latency. This typically allows you to
create much higher performance applications.

Messaging systems decouple the senders of messages from the consumers of messages. The senders and consumers
of messages are completely independent and know nothing of each other. This allows you to create flexible, loosely
coupled systems.

Often, large enterprises use a messaging system to implement a message bus which loosely couples heterogeneous
systems together. Message buses often form the core of an Enterprise Service Bus
[http://en.wikipedia.org/wiki/Enterprise_service bus]. (ESB). Using a message bus to de-couple disparate systems
can alow the system to grow and adapt. It also allows more flexibility add new systems or retire old ones since
they don't have brittle dependencies on each other.

2.2. Messaging styles

Messaging systems normally support two main styles of asynchronous messaging: message queue

http://en.wikipedia.org/wiki/Message_oriented_middleware
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://en.wikipedia.org/wiki/Message_queue

M essaging Concepts

[http://en.wikipedia.org/wiki/Message queue] messaging (also known as point-to-point messaging) and publish
subscribe [http://en.wikipedia.org/wiki/Publish_subscribe] messaging. We'll summarise them briefly here:

2.2.1. The Message Queue Pattern

With this type of messaging you send a message to a queue. The message is then typically persisted to provide a
guarantee of delivery, then some time later the messaging system delivers the message to a consumer. The con-
sumer then processes the message and when it is done, it acknowledges the message. Once the message is acknow-
ledged it disappears from the queue and is not available to be delivered again. If the system crashes before the mes-
saging server receives an acknowledgement from the consumer, then on recovery, the message will be available to
be delivered to a consumer again.

With point-to-point messaging, there can be many consumers on the queue but a particular message will only ever
be consumed by a maximum of one of them. Senders (also known as producers) to the queue are completely de-
coupled from receivers (also known as consumers) of the queue - they do not know of each others existence.

A classic example of point to point messaging would be an order queue in a company's book ordering system. Each
order is represented as a message which is sent to the order queue. There are many front end ordering systems
which send orders to the order queue. When a message arrives on the queue it is persisted - this ensures that if the
server crashes the order is not lost. There are many consumers on the order queue - each representing an instance of
an order processing component - these can be on different physical machines but consuming from the same queue.
The messaging system delivers each message to one and only one of the ordering processing components. Different
messages can be processed by order processors, but a single order is only processed by one order processor - this
ensures orders aren't processed twice.

As an order processor receives a message, it fulfills the order, sends order information to the warehouse system and
then updates the order database with the order details. Once it's done that it acknowledges the message to tell the
server that the order message is done and can be forgotten about. Often the send to the warehouse system, update in
database and acknowledgement will be completed in a single transaction to ensure ACID
[http://en.wikipedia.org/wiki/ACID] properties.

2.2.2. The Publish-Subscribe Pattern

With publish-subscribe messaging many senders can send messages to an entity on the server, often called atopic
(e.g. inthe IMS world).

There can be many subscriptions on a topic, each subscription receives a copy of each message sent to the topic.
This differs from the message queue pattern where each message is only consumed by a single consumer.

Subscriptions can optionally be durable which means they retain a copy of each message sent to the topic until the
subscriber consumesit.

An example of publish-subscribe messaging would be a news feed. As news articles are created by different editors
around the world they are sent to a news feed topic. There are many subscribers around the world who are inter-
ested in receiving news items - each one creates a subscription and the messaging system ensures that a copy of
each news message is delivered to each subscription.

2.3. Delivery guarantees

http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/Publish_subscribe
http://en.wikipedia.org/wiki/ACID

M essaging Concepts

A key feature of most messaging systems is reliable messaging. With reliable messaging the server gives a guaran-
tee that the message will be delivered once and only once to each consumer of a queue or each durable subscription
of atopic, even in the event of system failure. Thisis crucial for many businesses, you don't want your orders ful-
filled more than once or your ordersto be lost.

In other cases you may not care about a once and only once delivery guarantee and are happy to cope with duplic-
ate deliveries. The messaging system allows you to configure which delivery guarantees you require.

2.4. Transactions

Messaging systems typically support the sending and acknowledgement of multiple messages in a single local
transaction. JBoss Messaging aso supports the sending and acknowledgement of message as part of alarge global
transaction - using the Java mapping of XA, JTA.

2.5. Durability

Messages are either durable or non durable. Durable messages will persisted in permanent storage and will survive
server failure. Non durable messages will not survive server failure or restart. Examples of durable messages might
be orders or trades, where they cannot be lost. An example of a non durable message might be a stock price update.
Thisistransitory and there's no need for it to survive arestart.

2.6. Messaging APIs and protocols

How do client applications interact with messaging systems in order to send and consume messages?

Several messaging systems provide their own proprietary APIs with which the client communicates with the mes-
saging system.

There are also some standard ways of operating with messaging systems and some emerging standards in this
space.

Let'stake abrief look at these;

2.6.1. Java Message Service (JMS)

JMS [http://en.wikipedia.org/wiki/Java Message Service] is part of Sun's JEE specification. It's a Java APl that
encapsul ates both message queue and publish-subscribe messaging patterns. IMS is a lowest common denominator
specification - i.e. it was created to encapsulate common functionality of the aready existing messaging systems
that were available at the time of its creation.

JMSis avery popular APl and is implemented by most messaging systems. JMS is only available to clients run-
ning Java.

JMS does not define a standard wire format - it only defines a programmatic APl so IM S clients and servers from
different vendors cannot interoperate since they will most likely use the vendor's own internal wire protocol.

http://en.wikipedia.org/wiki/Java_Message_Service

M essaging Concepts

JBoss Messaging provides afully compliant IMS 1.1 API.

2.6.2. System specific APIs

Many systems provide their own programmatic APl for which to interact with the messaging system. The advant-
age of thisit allows the full set of system functionality to be exposed to the client application. API's like IMS are
not normally rich enough to expose al the extra features that most messaging systems provide.

JBoss Messaging providesits own core client API for clients to use if they wish to have access to functionality over

and above that accessible viathe IMS API.

2.6.3. STOMP

STOMP [http://en.wikipedia.org/wiki/Streaming_Text_Orientated Messaging_Protocol] is a very simple protocol
for interoperating with messaging systems. It defines a wire format, so theoretically any STOMP client can work
with any messaging system that supports STOMP. STOMP clients are available in many different programming
languages.

JBoss Messaging can be wused by any STOMP client when using the StompConnect
[http://stomp.codehaus.org/StompConnect] broker which translates the STOMP protocol to the IMS API.

JBoss Messaging will be shortly implementing the STOMP protocol on the broker, thus avoiding having to use
StompConnect.

2.6.4. AMQP

AMQP [http://en.wikipedia.org/wiki/AMQP] is an emerging standard for interoperable messaging. It also defines a
wire format, so any AMQP client can work with any messaging system that supports AMQP. AMQP clients are
available in many different programming languages.

JBoss Messaging will shortly be implementing AMQP.

2.6.5. REST

REST [http://en.wikipedia.org/wiki/Representational_State Transfer] approaches to messaging are showing a lot
interest recently. With a REST approach messaging resources are manipulated as resources defined by a URI and
typically using a smple set of operations on those resources, e.g. PUT, POST, GET etc. REST approaches to mes-
saging often use HTTP as their underlying protocol.

The advantage of a REST approach with HTTP isin its simplicity and the fact the internet is already tuned to deal
with HTTP optimally.

JBoss Messaging will shortly be implementing REST.

2.7. High Availability

http://en.wikipedia.org/wiki/Streaming_Text_Orientated_Messaging_Protocol
http://stomp.codehaus.org/StompConnect
http://en.wikipedia.org/wiki/AMQP
http://en.wikipedia.org/wiki/Representational_State_Transfer

M essaging Concepts

High Availability (HA) means that the system should remain operational after failure of one or more of the servers.
The degree of support for HA varies between various messaging systems.

Some messaging systems require you to deal with server side failure by writing some client side code which gets
called on event of server failure, and in which you are supposed to recreate your connections to another server.

JBoss Messaging provides 100% transparent failover where you don't have have to write any specia client side
code to deal with failure. On failover JBoss Messaging will automatically fail over your client connections to an-
other server, and your client sessions can continue as if nothing happened.

For more information on HA, please see Chapter 37.

2.8. Clusters

Many messaging systems allow you to create groups of messaging servers called clusters. Clusters allow the load
of sending and consuming messages to be spread over many servers. This allows your system to be able scale hori-
zontally by adding new serversto the cluster.

Degrees of support for clusters varies between messaging systems, with some systems having fairly basic clusters
with the cluster members being hardly aware of each other.

JBoss Messaging provides very configurable state of the art clustering where messages can be intelligently load
balanced between the servers in the cluster, according to the number of consumers on each node, and whether they
are ready for messages.

JBoss Messaging also has the ability to automatically redistribute messages between nodes of a cluster to prevent
starvation on any particular node.

For full details on clustering, please see Chapter 36.

2.9. Bridges and routing

Some messaging systems allow isolated clusters or single nodes to be bridged together, typically over unreliable
connections like awide area network (WAN).

A bridge normally consumes from a queue on one server and forwards messages to another queue on a different
server. Bridges cope with unreliable connections, automatically reconnecting when the connections becomes avail-
able again.

JBoss Messaging bridges can be configured with filter expressions to only forward certain messages, and trans-
formation can also be hooked in.

JBoss Messaging also alows routing between queues to be configured in server side configuration. This allows
complex routing networks to be set up forwarding or copying messages from one destination to another, forming a
global network of interconnected brokers.

For more information please see Chapter 34 and Chapter 33.

Architecture

In this section we will give an overview of the JBoss Messaging high level architecture.

3.1. Core Architecture

JBoss Messaging core is designed simply as set of Plain Old Java Objects (POJOS).

We've also designed it to have as few dependencies on external jars as possible. In fact, JBoss Messaging core has
zero dependencies on any jars other than the standard JDK classes!

This allows JBoss Messaging to be easily embedded in your own project, or instantiated in any dependency injec-
tion framework such as JBoss Microcontainer, Spring or Google Guice.

A JBoss Messaging server has its own high performance persistent journal, which it uses for message and other
persistence.

Using a high performance journal alows outrageous persistence message performance, something not achievable
when using arelational database for persistence.

JBoss Messaging clients, potentially on different physical machines interact with the JBoss Messaging server.
JBoss Messaging currently provides two APIs for messaging at the client side:

1. Coreclient API. Thisisasimpleintuitive Java APl that allows the full set of messaging functionality without
some of the complexities of IMS.

2. JMSclient API. The standard IMS APl is available at the client side.
JMS semantics are implemented by athin IM S facade layer on the client side.

The JBoss Messaging server does not speak JMS and in fact does not know anything about JIMS, it's a protocol ag-
nostic messaging server designed to be used with multiple different protocols.

When a user uses the IMS API on the client side, all IMS interactions are trandated into operations on the JBoss
Messaging core client API before being transferred over the wire using the JBoss Messaging wire format.

The server always just deals with core API interactions.

A schematic illustrating this relationship is shown in figure 3.1 below:

Architecture

Persistent Journal

JBoss Messaging Server

Core client Core client
JMS Facade
User User
Application 1 Application 2

Figure 3.1 shows two user applications interacting with a JBoss Messaging server. User Application 1 is using the
JMS API, while User Application 2 is using the core client API directly.

Y ou can see from the diagram that the IMS APl isimplemented by athin facade layer on the client side.

Architecture

3.2. JBoss Messaging embedded in your own application

JBoss Messaging core is designed as a set of simple POJOs so if you have an application that requires messaging
functionality internally but you don't want to expose that as a messaging server you can directly instantiate and em-
bed messaging serversin your own application.

For more information on embedding JBoss M essaging, see Chapter 41.

3.3. JBoss Messaging integrated with a JEE application server

JBoss Messaging provides its own fully functional Java Connector Architecture (JCA) adaptor which enables it to
be integrated easily into any JEE compliant application server or servlet engine.

JEE application servers provide Message Driven Beans (MDBSs), which are a specia type of Enterprise Java Beans
(EJBs) that can process messages from sources such as JM S systems or mail systems.

Probably the most common use of an MDB is to consume messages from a JM S messaging system.

According to the JEE specification, a JEE application server uses a JCA adapter to integrate with a JM S messaging
system so it can consume messages for MDBs.

However, the JCA adapter is not only used by the JEE application server for consuming messages via MDBS, it is
also used when sending message to the JM S messaging system e.g. from inside an EJB or servlet.

When integrating with a IMS messaging system from inside a JEE application server it is aways recommended
that thisis done viaa JCA adaptor.

The application server's JCA service provides extra functionality such as connection pooling and automatic transac-
tion enlistment, which are desirable when using messaging, say, from inside an EJB. It is possible to talk to aJMS
messaging system directly from an EJB, MDB or servlet without going through a JCA adapter, but this is not re-
commended since you will not be able to take advantage of the JCA features, such as caching of JIMS sessions,
which can result in poor performance.

Figure 3.2 below shows a JEE application server integrating with a JBoss Messaging server via the JBoss Mes-
saging JCA adaptor. Note that all communication between EJB sessions or entity beans and Message Driven beans
go through the adaptor and not directly to JBoss M essaging.

The large arrow with the prohibited sign shows an EJB session bean talking directly to the JBoss Messaging server.
Thisis not recommended as you'll most likely end up creating a new connection and session every time you want
to interact from the EJB, which is an anti-pattern.

Architecture

JEE Application Server
Servlet —— ™| MDB
EJB —— = MDB
EJB —m{ MDB
¥
JCA
adaptor

JBoss Messaging Server

For more information on using the JCA adaptor, please see Chapter 31.

3.4. JBoss Messaging stand-alone server

JBoss Messaging can aso be deployed as a stand-alone server. This means a fully independent messaging server
not dependent on a JEE application server.

The standard stand-alone messaging server configuration comprises a core messaging server, a JMS service and a
JINDI service.

Therole of the IMS Service is to deploy any IMS Queues, Topics and ConnectionFactory instances from any serv-
er side j bmjms. xni configuration files. It also provides a simple management API for creating and destroying
Queues, Topics and ConnectionFactory instances which can be accessed via IMX or the connection. It is a separate

10

Architecture

service to the JBoss Messaging core server, since the core server is IMS agnostic. If you don't want to deploy any
JM S Queues, Topics and ConnectionFactory instances via server side XML configuration and don't require aJMS
management API on the server side then you can disable this service.

We also include a INDI server since JNDI is a common reguirement when using JM S to lookup Queues, Topics
and ConnectionFactory instances. If you do not require JNDI then this service can aso be disabled. JBoss Mes-
saging allows you to programmatically create IMS and core objects directly on the client side as opposed to |ook-
ing them up from JNDI, so a INDI server is not always a requirement.

The stand-alone server configuration uses JBoss Microcontainer to instantiate and enforce dependencies between
the components. JBoss Microcontainer is avery lightweight POJO bootstrapper.

The stand-alone server architecture is shown in figure 3.3 below:

JBoss Microcontainer

JNDI Server

JBoss Messaging core
server

JMS Service

For more information on server configuration files see Section 45.1. $

11

Using the Server

This chapter will familiarise you with how to use the JBoss Messaging server.

WEe'll show whereit is, how to start and stop it, and we'll describe the directory layout and what all the files are and
what they do.

For the remainder of this chapter when we talk about the JBoss Messaging server we mean the JBoss Messaging
standalone server, in its default configuration with a IMS Service and INDI service enabled.

When running embedded in JBoss Application Server the layout may be slightly different but by-and-large will be
the same.

4.1. Starting and Stopping the standalone server

In the distribution you will find a directory called bi n.

cd into that directory and you'll find a unix/linux script called r un. sh and awindows batch file called r un. bat
Torun on Unix/Linux type. /run. sh

To run on Windows typer un. bat

These scripts are very simple and basically just set-up the classpath and some JVM parameters and start the JBoss
Microcontainer. The Microcontainer is alight weight container used to deploy the JBoss Messaging POJO's

To stop the server you'll also find a unix/linux script st op. sh and awindows batch filer un. bat

To run on Unix/Linux type. / st op. sh

To run on Windows type st op. bat

Please note that JBoss Messaging requires a Java s or later JDK to run. We recommend running on Java 6.

Both the run and the stop scripts use the config under confi g/ st and- al one/ non- cl ust er ed by default. The con-
figuration can be changed by running . /run.sh ../confi g/ stand-al one/ cl ustered or another config of your
choosing. Thisis the same for the stop script and the windows bat files.

4.2. Server JVM settings

The run scriptsrun. sh and run. bat set some JVM settings for tuning running on Java 6 and choosing the garbage
collection policy. We recommend using a parallel garbage collection algorithm to smooth out latency and minim-

12

Using the Server

ises large GC pauses.

By default JBoss Messaging runs in a maximum of 1GB of RAM. To increase the memory settings change the -
Xms and - Xmx memory settings as you would for any Java program.

If you wish to add any more JVM arguments or tune the existing ones, the run scripts are the place to do it.

4.3. Server classpath

JBoss Messaging looks for its configuration files on the Java classpath.
The scriptsrun. sh and run. bat specify the classpath when calling Java to run the server.

In the distribution, the run scripts will add the non clustered configuration directory to the classpath. Thisis a dir-
ectory which contains a set of configuration files for running the JBoss Messaging server in a basic non-clustered
configuration. In the distribution this directory isconf i g/ st and- al one/ non-cl ust er ed/ from the root of the distri-
bution.

The distribution contains several standard configuration sets for running:

* Non clustered stand-alone.

* Clustered stand-alone

¢ Non clustered in JBoss Application Server
e Clustered in JBoss Application Server

You can of course create your own configuration and specify any configuration directory when running the run
script.

Just make sure the directory is on the classpath and JBoss Messaging will search there when starting up.

4.4. Library Path

If you're using the Asynchronous IO Journal on Linux, you need to specify j ava. | i brary. pat h as a property on
your Java options. Thisis done automatically in ther un. sh script.

If you don't specify java.library. path a your Java options then the VM will use the environment variable
LD_LI BRARY_PATH.

4.5. System properties

JBoss Messaging also takes a couple of Java system properties on the command line for configuring logging prop-
erties

JBoss Messaging uses JDK logging to minimise dependencies on other logging systems. JDK logging can then be
configured to delegate to some other framework, e.g. log4j if that's what you prefer.

13

Using the Server

For more information on configuring logging, please see Chapter 40.

4.6. Configuration files

The configuration directory is specified on the classpath in the run scripts run. sh and run. bat This directory can
contain the following files.

* jbmjboss-beans.xnl. Thisis the JBoss Microcontainer beans file which defines what beans the Microcon-
tainer should create and what dependencies to enforce between them. Remember that JBoss Messaging isjust a
set of POJOs. In the stand-alone server, it's the JBoss Microcontainer which instantiates these POJOs and en-
forces dependencies between them and other beans. Please see Section 4.8 for more information on thisfile.

e jbmeconfiguration.xm . Thisisthe main JBoss Messaging configuration file. All the parameters in this file
are described in Chapter 45.

e jbm queues. xn . This file contains predefined queues, queue settings and security settings. The file is optional
- all this configuration can aso live in j bm confi gurati on. xn . In fact, the default configuration sets do not
have aj bm queues. xni file. The purpose of allowing queues to be configured in these filesis to alow you to
manage your queue configuration over many files instead of being forced to maintain it in a single file. There
can bemany j bm queues. xm fileson the classpath. All will be loaded if found.

* jbmusers.xn JBoss Messaging ships with a security manager implementation which obtains user credentials
from the j bm users. xm file. This file contains user, password and role information. For more information on
security ,please see Chapter 30.

e jbmjms.xm Thedistro configuration by default includes a server side JIMS service which mainly deploys IMS
Queues, Topics and ConnectionFactorys from this file into JNDI. If you're not using JMS, or you don't need to
deploy JM S objects on the server side, then you don't need this file. For more information on using IMS, please
see Chapter 5.

e logging. properties Thisisused to configure the logging handlers used by the Javalogger. For more informa-
tion on configuring logging, please see Chapter 40.

e log4j.xm Thisisthe Log4j configuration if the Logdj handler is configured.
Note

The property fi | e- depl oynent - enabl ed in the j bm confi guration. xm configuration when set to false
mans that the other configuration files are not loaded. Thisistrue by default.

It is also possible to use system property substitution in all the configuration files. by replacing a value with the
name of a system property. Here is an example of this with a connector configuration:

<connector name="netty">
<factory-cl ass>org. | boss. messagi ng.integration.transports.netty. NettyConnect or Factory</factory-c
<param key="j bm renoting. netty. host" value="${jbmrenpting.netty. host:|ocal host}" type="String"
<param key="j bmrenoting. netty.port" value="${jbmrenoting.netty. port:5445}" type="Integer"/>
</ connect or >

here you can see we have replaced 2 values with system properties jbmrenoting. netty. host and

14

Using the Server

jbmrenoting. netty. port. These values will be replaced by the value found in the system property if there is one,
if not they default back to localhost or 5445 respectively. It is aso possible to not supply a default. i.e.

${j bm renoti ng. netty. host}, however the system property must be supplied in that case.

4.7. JBoss Microcontainer Beans File

The stand-alone server is basically a set of POJOs which are instantiated by the light weight JBoss Microcontainer

[http://www.jboss.org/jbossmc/]engine.

Note

A beansfile is aso needed when the server is deployed in the JBoss Application Server but this will deploy
adlightly different set of objects since the Application Server will already have things like security etc de-

ployed.

Let'stake alook at an example beans file from the stand-alone server:

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">
<bean nane="Nam ng" cl ass="org.jnp.server. Nani ngBeanl npl "/ >

<l-- JNDI server. Disable this if you don't want JNDI -->
<bean nanme="JNDI Server" class="org.jnp.server. Min">

<property nane="nam ngl nfo">

<i nj ect bean="Nani ng"/>

</ property>

<property nane="port">1099</ property>

<property nane="bi ndAddr ess" >l ocal host </ property>

<property nanme="rni Port">1098</ property>

<property nane="rm Bi ndAddr ess" >l ocal host </ property>
</ bean>

<!-- MBean server -->
<bean nane="MBeanServer" class="j avax. managenent. MBeanServer">
<constructor factoryC ass="java. | ang. managenent . Managenent Fact or y"
fact oryMet hod="get Pl at f or niVBeanSer ver"/ >

</ bean>

<l-- The core configuration -->

<bean nane="Confi guration" class="org.jboss. nmessagi ng.core.config.inpl.FileConfiguration">
</ bean>

<!-- The security manager -->

<bean nane="JBMSecurityManager"

cl ass="org. j boss. nessagi ng. core. security.inpl.JBMsecurityManager| mpl ">

<start ignored="true"/>
<stop ignored="true"/>
</ bean>

<!-- The core server -->

<bean nane="Messagi ngServer" class="org. | boss. nessagi ng. core. server.inpl.Messagi ngServer| npl ">

<start ignored="true"/>
<stop ignored="true"/>
<const ructor>
<par anet er >
<i nj ect bean="Configuration"/>
</ par anet er >

15

http://www.jboss.org/jbossmc/

Using the Server

<par anet er >
<i nj ect bean="MBeanServer"/>
</ par anet er >
<par anet er >
<i nj ect bean="JBMSecurityManager"/>
</ par anet er >
</ const ructor >
</ bean>

<l-- The JMS server -->
<bean nane="JMsSServer Manager"
cl ass="org.j boss. messagi ng. j ms. server. i npl . JMSSer ver Manager | npl " >
<constructor>
<par anet er >
<i nj ect bean="Messagi ngServer"/>
</ par anet er >
</ const ructor >
</ bean>

</ depl oynment >

We can see that, as well as the core JBoss Messaging server, the stand-alone server instantiates various different
POJOs, letslook at them in turn:
e INDIServer

Many clients like to look up JMS Objects from JNDI so we provide a JINDI server for them to do that. If you
don't need JNDI this can be commented out or removed.

« MBeanServer

In order to provide a IMX management interface a IMS MBean server is necessary in which to register the
management objects. Normally thisis just the default platform MBean server available in the VM instance. If
you don't want to provide a IM X management interface this can be commented out or removed.

« Configuration

The messaging server is configured with a Configuration object. In the default stand-alone set-up it uses a File-
Configuration object which knows to read configuration information from the file system. In different configur-
ations such as embedded you might want to provide configuration information from somewhere else.

* Security Manager. The security manager used by the messaging server is pluggable. The default one used just
reads user-role information from thej bm users. xn file on disk. However it can be replaced by a JAAS secur-
ity manager, or when running inside JBoss Application Server it can be configured to use the JBoss AS security
manager for tight integration with JBoss AS security. If you've disabled security altogether you can remove this
too.

» MessagingServer
Thisisthe core server. It's where 99% of the magic happens
¢« IMSServerManager

This deploys any JMS Objects such as IMS Queues, Topics and ConnectionFactory instances from j bm
jms. xm files on the disk. It also provides a simple management API for manipulating JMS Objects. On the

16

Using the Server

whole it just translates and delegates its work to the core server. If you don't need to deploy IM S Queues, Top-
ics and ConnectionFactorys from server side configuration and don't require the IM S management interface this
can be disabled.

4.8. The main configuration file.

The configuration for the JBoss Messaging core server is contained in j bm confi guration. xm . Thisis what the
FileConfiguration bean uses to configure the messaging server.

There are many attributes which you can configure JBoss Messaging. In most cases the defaults will do fine, in fact
every attribute can be defaulted which means afile with a single empty confi gur ati on element isavalid configur-
ation file. The different configuration will be explained throughout the manual or you can refer to the configuration
reference here.

17

Using JMS

Although JBoss Messaging provides a JMS agnostic messaging API, many users will be more comfortable using
JMS.

JMS is avery popular API standard for messaging, and most messaging systems provide a JMS API. If you are
completely new to JMS we suggest you following the Sun JMS tutoria
[http://java.sun.com/products/jms/tutorial/l 3 1-fcs/doc/jms_tutoria TOC.html] - afull IMS tutorial is out of scope
for this guide.

JBoss Messaging also ships with a wide range of examples, many of which demonstrate IMS API usage. A good
place to start would be to play around with the simple IMS Queue and Topic example, but we also provide ex-
amples for many other parts of the IMS API. A full description of the examplesis available in Chapter 9.

In this section well go through the main steps in configuring the server for IMS and creating a smple JMS pro-
gram. Well aso show how to configure and use JNDI, and also how to use JMS with JBoss Messaging without us-
ing any JNDI.

5.1. A simple ordering system

For this chapter we're going to use a very simple ordering system as our example. It's a somewhat contrived ex-
ample because of its extreme simplicity, but it serves to demonstrate the very basics of setting up and using JIMS.

We will have asingle IMS Queue called o der Queue, and we will have asingle MessagePr oducer sending an order
message to the queue and a single MessageConsuner consuming the order message from the queue.

The queue will be a durabl e queue, i.e. it will survive a server restart or crash. We aso want to predeploy the
queue, i.e. specify the queue in the server IMS configuration so it's created automatically without us having to ex-
plicitly create it from the client.

5.2. JMS Server Configuration

Thefilejbmjms. xm on the server classpath contains any JIM S Queue, Topic and ConnectionFactory instances that
we wish to create and make available to lookup via the INDI.

A IMS ConnectionFactory object is used by the client to make connections to the server. It knows the location of
the server it is connecting to, as well as many other configuration parameters. In most cases the defaults will be ac-
ceptable.

WEe'll deploy asingle IMS Queue and a single JIMS Connection Factory instance on the server for this example but
there are no limits to the number of Queues, Topics and Connection Factory instances you can deploy from thefile.

18

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jms_tutorialTOC.html

Using IMS

Here's our configuration:

<confi guration xm ns="urn:jboss: nessagi ng"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="urn:j boss: nessagi ng ../schemas/jbmjns. xsd ">

<connection-factory nane="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>
<entry name="Connecti onFactory"/>
</entries>
</ connecti on-factory>

<queue nanme="O der Queue" >
<entry nanme="queues/ O der Queue"/ >
</ queue>

</ configuration>

We deploy one ConnectionFactory called Connect i onFact ory and bind it in just one place in INDI as given by the
ent ry element. ConnectionFactory instances can be bound in many placesin JNDI if you require.

Note

The JMS connection factory references aconnect or called netty. Thisis areference to a connector object
deployed in the main core configuration file j bm confi gurati on. xm which defines the transport and para-
meters used to actually connect to the server.

5.3. JNDI configuration

When using JNDI from the client side you need to specify a set of INDI properties which tell the INDI client where
to locate the INDI server, amongst other things. These are often specified in afile caled j ndi . properti es on the
client classpath, or you can specify them directly when creating the JNDI initial context. A full INDI tutorial is out-
side the scope of this document, please See the Sun JNDI tutorial
[http://java.sun.com/products/jndi/tutorial/TOC.html] for more information on how to use JNDI.

For talking to the JBoss INDI Server, the jndi properties will look something like this:

java.nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der. url = np: // myhost : 1099
java. nam ng.factory. url.pkgs=org.jboss. nam ng: org. jnp.interfaces

Where nyhost isthe hosthame or |P address of the INDI server. 1099 is the port used by the INDI server and may
vary depending on how you have configured your JINDI server.

In the default standalone configuration, JNDI server ports are configured in the j bm j boss- beans. xm file where

the INDI Server bean is confgured, here's a snippet from the file:

<bean nane="JNDI Server" cl ass="org.jnp.server. Min">
<property nanme="nam ngl nf o">

19

http://java.sun.com/products/jndi/tutorial/TOC.html

Using IMS

<i nj ect bean="Nami ng"/>
</ property>
<property nanme="port">1099</ property>
<property nanme="bi ndAddr ess" >l ocal host </ property>
<property nanme="rni Port">1098</ property>
<property name="rm Bi ndAddr ess" >l ocal host </ pr operty>
</ bean>

Note

If you want your JNDI server to be available to non local clients make sure you change it's bind address to

something other than | ocal host !

5.4. The code

Here's the code for the example:
First we'll create a JNDI initial context from which to lookup our JIM S objects:

Initial Contect ic = new Initial Context();

Now well look up the connection factory:

ConnectionFactory cf = (ConnectionFactory)ic. | ookup("/Connecti onFactory");

And look up the Queue:

Queue order Queue = (Queue)ic. | ookup("/queues/ Order Queue");

Next we create a JM S connection using the connection factory:

Connecti on connection = cf.createConnection();

And we create a non transacted JIM S Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connecti on. createSessi on(fal se, Sessi on. AUTO ACKNOALEDCGE) ;

We create a MessageProducer that will send ordersto the queue:

MessagePr oducer producer = session. createProducer (order Queue);

And we create a MessageConsumer which will consume orders from the queue:

MessageConsumer consuner = session. creat eConsuner (or der Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

20

Using IMS

Text Message nessage = session. creat eText Message("This is an order");
producer. send(nmessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner. receive();
Systemout.println("Got order: " + recei vedMessage. get Text());

It's as simple as that. For a wide range of working JM S examples please see the examples directory in the distribu-
tion.

5.5. Directly instantiating JMS Resources without using JNDI

Although it's a very common JM'S usage pattern to lookup JMS Administered Objects (that's IMS Queues, Topics
and Connection Factories) from JNDI, in some cases a JNDI server is not available and you still want to use JIMS,
or you just think "Why do | need INDI? Why can't | just instantiate these objects directly?'

With JBoss Messaging you can do exactly that. JBoss Messaging supports the direct instantiation of IMS Queue,
Topic and Connection Factory instances, so you don't have to use JINDI at all.

For afull working example of direct instantiation please see the IMS examplesin Chapter 9.
Here's our simple example, rewritten to not use JNDI at all:

We create the IMS ConnectionFactory object directly, note we need to provide connection parameters and specify
which transport we are using, for more information on connectors please see Chapter 14.

Transport Configurati on transport Configurati on =
new Transport Confi gurati on(NettyConnector Factory. cl ass. get Nanme());
Connecti onFactory cf = new JBossConnecti onFactory();

We create the IM S Queue Object directly:

Queue order Queue = new JBossQueue(" Order Queue");

Next we create a JM S connection using the connection factory:

Connecti on connection = cf.createConnection();

And we create a non transacted JIM S Session, with AUTO_ACKNOWLEDGE acknowledge mode:

Sessi on session = connecti on. createSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;

We create a MessageProducer that will send ordersto the queue:

MessagePr oducer producer = session. createProducer (order Queue);

And we create a MessageConsumer which will consume orders from the queue:

21

Using IMS

MessageConsumer consuner = sessi on. creat eConsuner (or der Queue) ;

We make sure we start the connection, or delivery won't occur on it:

connection.start();

We create a simple TextMessage and send it:

Text Message nmessage = session. creat eText Message("This is an order");
producer. send(nessage) ;

And we consume the message:

Text Message recei vedMessage = (Text Message) consuner. receive();
Systemout.println("Got order: " + receivedMessage. get Text());

5.6. Setting The Client ID

This represents the client id for aJM S client and is needed for creating durable subscriptions. It is possible to con-
figure this on the connection factory and can be set viathecl i ent -i d element. Any connection created by this con-
nection factory will have this set asitsclient id.

5.7. Setting The Batch Size for DUPS_OK

When the IM S acknowledge mode is set to DUPS_K it is possible to configure the consumer so that it sends the ac-
knowledgements in batches rather that one at a time, saving valuable bandwidth. This can be configured via the
connection factory viathe dups- ok- bat ch- si ze element and is set in bytes. The default is 1024 * 1024.

5.8. Setting The Transaction Batch Size

When receiving messages in a transaction it is possible to configure the consumer to send acknowledgements in
batches rather than individually saving valuable bandwidth. This can be configured on the connection factory via
thetransacti on- bat ch- si ze element and is set in bytes. The default is 1024 * 1024.

22

Using Core

JBoss Messaging coreis acompletely JM S-agnostic messaging system with its own core API.

If you don't want to use JMS you can use the core API directly. The core API provides all the functionality of IMS
but without much of the complexity. It also provides features that are not normally available using IMS.

6.1. Core Messaging Concepts

Some of the core messaging concepts are similar to IMS concepts, but core messaging concepts differ in some
ways. In genera the core messaging APl is simpler than the IMS API, since we remove distinctions between
queues, topics and subscriptions. We'll discuss each of the major core messaging concepts in turn, but to see the
API in detail, please consult the Javadoc.

6.1.1. Message

A message is the unit of datawhich is sent between clients and servers.

A message has a body which is effectively a byte[], it also has a set of properties which are key-value pairs. Each
property key is a string and property values can be of type integer, long, short, byte, byte[], String, double, float or
boolean.

A message has a destination which represents the address it is being sent to. When the message arrives on the serv-
er it isrouted to any queues that are bound to the address. An address may have many queues bound to it or even
none.

Messages can be either durable or non durable. Durable messages in a durable queue will survive a server crash or
restart. Non durable messages will never survive a server crash or restart.

Messages can be specified with a priority value between 0 and 9. O represents the highest priority and 9 represents
the lowest. JBoss Messaging will attempt to deliver higher priority messages before lower priority ones.

Messages can be specified with an optional expiry time. JBoss Messaging will not deliver messages after its expiry
time has been exceeded.

Messages also have an optional timestamp which represents the time the message was sent.

6.1.2. Address

A server maintains a mapping between an address and a set of queues. Zero or more queues can be bound to a
single address. Each queue can be bound with an optional message filter. When a message is routed to an address it

23

Using Core

is routed to the set of queues bound to the message's destination address. If any of the queues are bound with afil-
ter expression, then the message will only be routed to the subset of bound queues which match that filter expres-
sion.

Note

In core, there is no concept of a Topic, Topic isa JMS only term. Instead, in core, we just deal with ad-
dresses and queues.

For example, a IM S topic would implemented by a single address to which many queues are bound. Each
queue represents a subscription of the topic. A IMS Queue would be implemented as a single address to
which one queue is bound - that queue represents the IM S queue.

6.1.3. Queue

Queues can be durable, meaning the messages they contain survive a server crash or restart, as long as the mes-
sages in them are durable. Non durable queues do not survive a server restart or crash even if the messages they
contain are durable.

Queues can also be temporary, meaning they are automatically deleted when the client connection is closed, if they
are not explicitly deleted before that.

Queues can be bound with an optional filter expression. If a filter expression is supplied then the server will only
route messages that match that filter expression to any queues bound to the address.

Many queues can be bound to asingle address. A particular queue is only bound to a maximum of one address.

6.1.4. ClientSessionFactory

Clientsuse d i ent Sessi onFact ory instances to create d i ent Sessi on instances. d i ent Sessi onFact ory instances
know how to connect to the server to create sessions, and are configurable with many settings.

6.1.5. ClientSession

A client uses a ClientSession for consuming and producing messages and for grouping them in transactions. Client-
Session instances can support both transactional and non transactional semantics and also provide an XAResour ce
interface S0 messaging operations can be performed as part of a JIA
[http://java.sun.com/javaee/technol ogiedjtalindex.jsp] transaction.

ClientSession instances group ClientConsumers and ClientProducers.

6.1.6. ClientConsumer

Clients use d i ent Consumer instances to consume messages from a queue. Core Messaging supports both syn-
chronous and asynchronous message consumption semantics. d i ent Consurrer instances can be configured with an
optional filter expression and will only consume messages which match that expression.

24

http://java.sun.com/javaee/technologies/jta/index.jsp

Using Core

6.1.7. ClientProducer

Clients create d i ent Producer instances on d i ent Sessi on instances so they can send messages. ClientProducer
instances can specify an address to which all sent messages are routed, or they can have no specified address, and
the address is specified at send time for the message.

6.2. A simple example of using Core

Here's avery simple program using the core messaging API to send and receive a message:

Cli ent Sessi onFactory nettyFactory = new CientSessi onFactoryl npl (

new Transport Confi gurati on(
I nVMConnect or Fact ory. cl ass. get Nane()));

Cli ent Sessi on session = nettyFactory. createSession();

sessi on. cr eat eQueue(" exanpl e", "exanple", true);

Cli ent Producer producer = session.createProducer("exanple");

Cli ent Message nessage = session. created ient Message(true);

nmessage. get Body().witeString("Hello");

producer . send(nessage) ;

session.start();

Cl i ent Consuner consuner = session. creat eConsumer ("exanpl e");

Cli ent Message nsgRecei ved = consuner.receive();

System out. println("message = " + nmsgRecei ved. get Body().readString());

sessi on. cl ose();

25

Mapping JMS Concepts to the Core API

This chapter describes how JM S destinations are mapped to JBoss M essaging core queues.

JBoss Messaging core is IMS-agnostic. It does not have any concept of a IMS topic. A IMS topic is implemented
in core as an address (the topic name) with zero or more queues bound to it. Each queue bound to that address rep-
resents a topic subscription. Likewise, a IMS queue is implemented as an address (the IMS queue name) with one
single queue bound to it which represents the JIM S queue.

By convention, al JMS queues map to core queues where the core queue name has the string j ms. queue. prepen-
ded to it. E.g. the IMS queue with the name "orders.europe" would map to the core queue with the name
"jms.queue.orders.europe’. The address at which the core queueis bound is also given by the core queue name.

For JMSS topics the address at which the queues that represent the subscriptions are bound is given by prepending
the string "jms.topic.” to the name of the IMS topic. E.g. the IM S topic with name "news.europe” would map to the
core address "jms.topic.news.europe”

In other words if you send a IMS message to a JIM S queue with name "orders.europe” it will get routed on the serv-
er to any core queues bound to the address "jms.queue.orders.europe’. If you send a IMS message to a IM S topic
with name "news.europe' it will get routed on the server to any core queues bound to the address
"Jms.topic.news.europe”.

If you want to configure settings for a JIM S Queue with the name "orders.europe”, you need to configure the corres-
ponding core queue "jms.queue.orders.europe”:

<I-- expired nmessages in JM5 Queue "orders. europe"

will be sent to the JM5 Queue "expiry. europe" -->
<address-setting natch="j ns. queue. or ders. eur ope" >

<expi ry-addr ess>j nms. queue. expi ry. eur ope</ expi ry- addr ess>

</ addr ess-setting>

26

The Client Classpath

In this chapter we explain which jars you need on the Java classpath of a JBoss Messaging client application. This
depends on various factors including whether you're using just core, IMS, JNDI or Netty. We explain which jars
are needed in each case.

Note

All the jars mentioned here can be found in the i b directory of the JBoss Messaging distribution. Be sure
you only use the jars from the correct version of the release, you must not mix and match versions of jars
from different JBoss Messaging versions.

8.1. Pure Core Client

If you're using just a pure JBoss Messaging core client (i.e. no JIMS) then you need j bm core-client.jar on your
client classpath.

If you're using a Netty transport then you will also netty netty.jar andjbmtransports.jar.

8.2. JMS Client

If you're using JMS on the client side, then you will need j bm core-client.jar, jbmjns-client.jar andjbm
jms-api.jar. Notethat j bmj ms-api . j ar just contains Java EE API interface classes needed for thej avax. j ns. *
classes, so if you already have ajar with these interface classes on your classpath you won't need it.

If you're using a Netty transport then you will also netty netty.jar andjbmtransports.jar.

8.3. INDI

If you're looking up JNDI objects from the INDI server co-located with the JBoss Messaging standalone server
you'll also need thejarj np-client.jar jar onyour client classpath aswell as any other jars mentioned previously.

27

Examples

The JBoss Messaging distribution comes with a wide variety of run out-of-the-box examples demonstrating many
of the features.

The examples are available in the distribution, in the exanpl es directory. Examples are split into IMS and core ex-
amples. IMS examples show how a particular feature can be used by a norma JMS client. Core examples show
how the equivalent feature can be used by a core messaging client.

A set of Java EE examples are al so provided which need the JBoss Application Server installed to be able to run.

9.1. IMS Examples

TorunaJMS example, smply cd into the appropriate example directory and type ant .
Y ou will need to have Apache 1.7.0 or later ant installed on your system with the ant bi n directory on your path.

Here's alisting of the examples with a brief description.

9.1.1. Application-Layer Failover

JBoss Messaging implements fully transparent automatic failover of connections from a live to backup node, this
requires no special coding for failover, and is described in a different example. Automatic failover requires server
replication.

However, JBoss Messaging also supports Application-Layer failover, useful in the case that replication is not en-
abled on the server side.

With Application-Layer failover, it's up to the application to register a JIMS Except i onLi st ener With JBoss Mes-
saging which will be called by JBoss Messaging in the event that connection failure is detected.

The code in the Except i onLi st ener then recreates the IMS connection, session, etc on another node and the ap-
plication can continue.

Application-layer failover is an alternative approach to High Availability (HA). Application-layer failover differs
from automatic failover in that some client side coding is required in order to implement this. Also, with Applica-
tion-layer failover, since the old session abject dies and a new one is created, any uncommitted work in the old ses-
sion will be lost, and any unacknowledged messages might be redelivered.

9.1.2. Automatic (Transparent) Failover

28

Examples

The aut omati c-fail over example demonstrates two servers coupled as a live-backup pair for high availability
(HA), and aclient connection transparently failing over from live to backup when the live server is crashed.

JBoss Messaging implements seamless, transparent failover of client connections between live and backup servers.
Thisis implemented by the replication of state between live and backup nodes. When replication is configured and
alive node crashes, the client connections can carry on as if nothing happened and carry on sending and consuming

messages.

9.1.3. Automatic Reconnect

Ther econnect - same- node example demonstrates how JBoss M essaging connections can be configured to be resi-
lient to temporary network failures.

In the case of a network failure being detected, either as a result of afailure to read/write to the connection, or the
failure of a pong to arrive back from the server in good time after a ping is sent, instead of failing the connection
immediately and notifying any user Except i onLi st ener objects, JBoss Messaging can be configured to automatic-
ally retry the connection, and reconnect to the server when it becomes available again across the network.

9.1.4. Browser

The br onser example shows you how to use aJMS QueueBr owser with JBoss Messaging.
Queues are a standard part of IMS, please consult the IMS 1.1 specification for full details.
A QueueBr owser isused to look at messages on the queue without removing them. It can scan the entire content of

aqueue or only messages matching a message selector.

9.1.5. Core Bridge Example

The bri dge example demonstrates a core bridge deployed on one server, which consumes messages from a local
gueue and forwards them to an address on a second server.

Core bridges are used to create message flows between any two JBoss Messaging servers which are remotely sep-
arated. Core bridges are resilient and will cope with temporary connection failure allowing them to be an ideal
choice for forwarding over unreliable connections, e.g. aWAN.

9.1.6. Client Kickoff

Thecl i ent - ki ckof f example shows how to terminate client connections given an |P address using the IMX man-
agement API.

9.1.7. Client Side Load-Balancing

The cl i ent - si de- | oad- bal anci ng example demonstrates how subsequent connections created from a JIMS Con-
necti onFact ory can be created to different nodes of the cluster. In other words it demonstrates how JBoss Mes-
saging does client side load balancing of connections across the cluster.

29

Examples

9.1.8. Clustered Queue

The cl ust er ed- queue example demonstrates a IMS queue deployed on two different nodes. The two nodes are
configured to form a cluster. We then create a consumer for the queue on each node, and we create a producer on
only one of the nodes. We then send some messages via the producer, and we verify that both consumers receive
the sent messages in a round-robin fashio.

9.1.9. Clustered Standalone

The cl ust er ed- st andal one example demonstrates how to configure and starts 3 cluster nodes on the same ma-
chine to form acluster. A subscriber for aJMS topic is created on each node, and we create a producer on only one
of the nodes. We then send some messages via the producer, and we verify that the 3 subscribers receive al the
sent messages.

9.1.10. Clustered Topic

Thecl ust er ed- t opi ¢ example demonstrates a IM S topic deployed on two different nodes. The two nodes are con-
figured to form a cluster. We then create a subscriber on the topic on each node, and we create a producer on only
one of the nodes. We then send some messages via the producer, and we verify that both subscribers receive al the
sent messages.

9.1.11. Dead Letter

The dead- 1 et t er example shows you how to define and deal with dead letter messages. M essages can be delivered
unsuccessfully (e.g. if the transacted session used to consume them is rolled back).

Such a message goes back to the IMS destination ready to be redelivered. However, this meansit is possible for a
message to be delivered again and again without any success and remain in the destination, clogging the system.

To prevent this, messaging systems define dead letter messages: after a specified unsuccessful delivery attempts,
the message is removed from the destination and put instead in a dead letter destination where they can be con-
sumed for further investigation.

9.1.12. Delayed Redelivery

The del ayed-r edel i very example demonstrates how JBoss Messaging can be configured to provide a delayed re-
delivery in the case a message needs to be redelivered.

Delaying redelivery can often be useful in the case that clients regularly fail or roll-back. Without a delayed rede-
livery, the system can get into a "thrashing" state, with delivery being attempted, the client rolling back, and deliv-
ery being re-attempted in quick succession, using up valuable CPU and network resources.

9.1.13. Divert

JBoss Messaging diverts allow messages to be transparently "diverted" from one address to another with just some
simple configuration defined on the server side.

30

Examples

9.1.14. Durable Subscription

The dur abl e- subscri pti on example shows you how to use a durable subscription with JBoss Messaging. Durable
subscriptions are a standard part of IMS, please consult the IMS 1.1 specification for full details.

Unlike non-durable subscriptions, the key function of durable subscriptions is that the messages contained in them
persist longer than the lifetime of the subscriber - i.e. they will accumulate messages sent to the topic even if there
is no active subscriber on them. They will also survive server restarts. Note that for the messages to be persisted,
the messages sent to them must be marked as persistent messages.

9.1.15. Embedded

The enbedded example shows how to embed the JBoss Messaging Server within your own code.

9.1.16. HTTP Transport

Thehtt p-transport example shows you how to configure JBoss Messaging to use the HTTP protocol as its trans-
port layer.

9.1.17. Instantiate JMS Objects Directly

Usually, IMS Objects such as Connect i onFact ory, Queue and Topi ¢ instances are looked up from JNDI before be-
ing used by the client code. This objects are called "administered objects’ in IM S terminology.

However, in some cases a JNDI server may not be available or desired. To come to the rescue JBoss Messaging
also supports the direct instantiation of these administered objects on the client side so you don't have to use JNDI
for IMS.

9.1.18. Interceptor

JBoss Messaging allows an application to use an interceptor to hook into the messaging system. Interceptors allow
you to handle various message eventsin JBoss Messaging.

9.1.19. JAAS

The j aas example shows you how to configure JBoss Messaging to use JAAS for security. JBoss Messaging can
leverage JAAS to delegate user authentication and authorization to existing security infrastructure.

9.1.20. JMX Management

Thej mx example shows how to manage JBoss Messaging using IMX.

9.1.21. Large Message

The I ar ge- nessage example shows you how to send and receive very large messages with JBoss Messaging.

31

Examples

JBoss Messaging supports the sending and receiving of huge messages, much larger than can fit in available RAM
on the client or server. Effectively the only limit to message size is the amount of disk space you have on the serv-
er.

Large messages are persisted on the server so they can survive a server restart. In other words JBoss Messaging
doesn't just do a simple socket stream from the sender to the consumer.

9.1.22. Last-Value Queue

The | ast - val ue- queue example shows you how to define and deal with last-value queues. Last-Value queues are
specia gqueues which discard any messages when a hewer message with the same value for a well-defined last-
value property is put in the queue. In other words, alast-value queue only retains the last value.

A typical example for last-value queue is for stock prices, where you are only interested by the latest value for a
particular stock.

9.1.23. Load Balanced Clustered Queue

The cl ust er ed- queue example demonstrates a IMS queue deployed on two different nodes. The two nodes are
configured to form a cluster.

We then create a consumer on the queue on each node, and we create a producer on only one of the nodes. We then
send some messages via the producer, and we verify that both consumers receive the sent messages in a round-
robin fashion.

In other words, JBoss Messaging load balances the sent messages across all consumers on the cluster

9.1.24. Management

The managenent example shows how to manage JBoss Messaging using JM S Messages to invoke management op-
erations on the server.

9.1.25. Management Notification

The managenent - not i fi cati on example shows how to receive management notifications from JBoss Messaging
using JMS messages. JBoss Messaging servers emit management notifications when events of interest occur
(consumers are created or closed, destinations are created or deleted, security authentication fails, etc.).

9.1.26. Message Consumer Rate Limiting

With JBoss Messaging you can specify a maximum consume rate at which a JIM S MessageConsumer will consume
messages. This can be specified when creating or deploying the connection factory.

If this value is specified then JBoss Messaging will ensure that messages are never consumed at a rate higher than
the specified rate. Thisisaform of consumer throttling.

9.1.27. Message Counter

32

Examples

The nessage- count er s example shows you how to use message counters to obtain message information for aJMS
queue.

9.1.28. Message Expiration

The expi ry example shows you how to define and deal with message expiration. Messages can be retained in the
messaging system for a limited period of time before being removed. IM S specification states that clients should
not receive messages that have been expired (but it does not guarantee this will not happen).

JBoss Messaging can assign an expiry destination to a given queue so that when messages are expired, they are re-
moved from the queue and sent to the expiry destination. These "expired" messages can later be consumed from the
expiry destination for further inspection.

9.1.29. Message Group

The message- gr oup example shows you how to configure and use message groups with JBoss Messaging. Message
groups alow you to pin messages so they are only consumed by a single consumer. Message groups are sets of
messages that has the following characteristics:

« Messages in a message group share the same group id, i.e. they have same IMSXGrouplD string property val-
ues

e The consumer that receives the first message of a group will receive all the messages that belongs to the group

9.1.30. Message Producer Rate Limiting

The producer-rte-1init example demonstrates how, with JBoss Messaging, you can specify a maximum send
rate at which a IM'S message producer will send messages.

9.1.31. Message Priority

Message Priority carries the delivery preference of messages.
It can be retrieved by the message's standard header field 'IM SPriority' as defined in JIM S specification version 1.1.

The value is of type integer, ranging from O (the lowest) to 9 (the highest). When messages are being delivered,
their priorities will effect their order of delivery. Messages of higher priorities will likely be delivered before those
of lower priorities.

Messages of equal priorities are delivered in the natural order of their arrival at their destinations. Please consult the
JMS 1.1 specification for full details.

9.1.32. Message Redistribution

The queue- nessage-r edi st ri but i on example demonstrates message redistribution between queues with the same
name deployed in different nodes of a cluster.

33

Examples

9.1.33. No Consumer Buffering

By default, JBoss Messaging consumers buffer messages from the server in a client side buffer before you actually
receive them on the client side. This improves performance since otherwise every time you called receive() or had
processed the last message in a Messageli st ener onMessage() method, the JBoss Messaging client would have to
go the server to request the next message, which would then get sent to the client side, if one was available.

This would involve a network round trip for every message and really reduce performance. Therefore, by defaullt,
JBoss Messaging pre-fetches messages into a buffer on each consumer.

In some case buffering is not desirable, and JBoss Messaging allows it to be switched off. This example demon-
strates that.

9.1.34. Paging

The pagi ng example shows how JBoss Messaging can support huge queues even when the server isrunning in lim-
ited RAM. It does this by transparently paging messages to disk, and depaging them when they are required.

9.1.35. Pre-Acknowledge
Standard JMS supports three acknowledgement modes. AUTO ACKNOW.EDGE, CLI ENT_ACKNOW.EDGE, and

DUPS_OK_ACKNOW.EDCGE. For a full description on these modes please consult the IM S specification, or any JMS tu-
torial.

All of these standard modes involve sending acknowledgements from the client to the server. However in some
cases, you redly don't mind losing messages in event of failure, so it would make sense to acknowledge the mes-
sage on the server before delivering it to the client. This example demonstrates how JBoss Messaging allows this
with an extra acknowledgement mode.

9.1.36. Queue

A simple example demonstrating a IMS queue.

9.1.37. Queue Requestor

A simple example demonstrating a JM S queue requestor.

9.1.38. Queue with Message Selector

The queue-sel ect or example shows you how to selectively consume messages using message selectors with
gueue consumers.

9.1.39. Request-Response

A simple example showing the IM S request-response pattern.

Examples

9.1.40. Scheduled Message

The schedul ed- message example shows you how to send a scheduled message to a IMS Queue with JBoss Mes-
saging. Scheduled messages won't get delivered until a specified time in the future.

9.1.41. Security

Thesecuri ty example shows you how configure and use role based queue security with JBoss M essaging.

9.1.42. Send Acknowledgements
The send- acknow edgenent s example shows you how to use JBoss Messaging's advanced asynchronous send ac-

knowl edgements feature to obtain acknowledgement from the server that sends have been received and processed in
aseparate stream to the sent messages.

9.1.43. Static Message Selector

Thestati c-sel ect or example shows you how to configure a JBoss M essaging core queue with static message se-
lectors (filters).

9.1.44. Static Message Selector Using JMS

Thestati c-sel ector -j ns example shows you how to configure a JBoss Messaging queue with static message se-
lectors (filters) using IMS.

9.1.45. SSL Transport

The sl - enabl ed shows you how to configure SSL with JBoss Messaging to send and receive message.

9.1.46. Symmetric Cluster

Thesymetric-cl ust er example demonstrates a symmetric cluster set-up with JBoss Messaging.

JBoss Messaging has extremely flexible clustering which allows you to set-up serversin many different topologies.
The most common topology that you'll perhaps be familiar with if you are used to application server clustering isa
symmetric cluster.

With a symmetric cluster, the cluster is homogeneous, i.e. each node is configured the same as every other node,
and every nodeis connected to every other node in the cluster.

9.1.47. Temporary Queue

A simple example demonstrating how to use a JMS temporary queue.

9.1.48. Topic

35

Examples

A simple example demonstrating a IM S topic.

9.1.49. Topic Hierarchy

JBoss Messaging supports topic hierarchies. With a topic hierarchy you can register a subscriber with a wild-card
and that subscriber will receive any messages sent to an address that matches the wild card.

9.1.50. Topic Selector 1

Thet opi c- sel ect or - exanpl el example shows you how to send message to a JIMS Topic, and subscribe them us-
ing selectors with JBoss M essaging.

9.1.51. Topic Selector 2

Thet opi c- sel ect or - exanpl e1 example shows you how to selectively consume messages using message selectors
with topic consumers.

9.1.52. Transactional Session

Thetransactional example shows you how to use atransactional Session with JBoss M essaging.

9.1.53. XA Heuristic

The xa- heuri sti ¢ example shows you how to make an XA heuristic decision through JBoss M essaging Manage-
ment Interface. A heuristic decision is a unilateral decision to commit or rollback an XA transaction branch after it
has been prepared.

9.1.54. XA Receive

Thexa-r ecei ve example shows you how message receiving behavesin an XA transaction in JBoss Messaging.

9.1.55. XA Send

The xa- send example shows you how message sending behavesin an XA transaction in JBoss M essaging.
9.1.56. XA with Transaction Manager

The xa-wi t h-j t a example shows you how to use JTA interfacesto control transactions with JBoss M essaging.

9.2. Core API Examples

To run a core example, simply cd into the appropriate example directory and type ant

36

Examples

9.2.1. Embedded

This example shows how to embed the JBoss Messaging server within your own code.

9.3. Java EE Examples

Most of the Java EE examples can be run the following way. simply cd into the appropriate example directory an
type ant depl oy. This will create a new JBoss AS profile and start the server. When the server is started from a
different window type ant run to run the example. Some examples require further steps, please refer to the ex-
amples documentation for further instructions.

9.3.1. EJB/JMS Transaction

An example that shows using an EJB and JM S together within a transaction.

9.3.2. HAJNDI (High Availability)

A simple example demonstrating using JNDI within a cluster.

9.3.3. Resource Adapter Configuration

This example demonstrates how to configure several properties on the JBoss Messaging JCA resource adaptor.

9.3.4. JMS Bridge

An example demonstrating the use of the JBoss Messaging JM S bridge.

9.3.5. MDB (Message Driven Bean)

A simple example of amessage driven bean.

9.3.6. Servlet Transport

An example of how to use the JBoss Messaging servlet transport.

9.3.7. Servlet SSL Transport

An example of how to use the JBoss Messaging servlet transport over SSL.

9.3.8. XA Recovery

An example of how XA recovery works within the JBoss Application server using JBoss Messaging.

37

10

Routing Messages With Wild Cards

JBoss Messaging allows the routing of messages via wildcard addresses.

If a consumer is created with an address of say queue. news. # then it will receive any messages sent to addresses
that match this, for instance queue. news. eur ope OF queue. news. usa Of queue. news. usa. sport . Thisallows acon-
sumer to consume messages which are sent to a hierarchy of addresses, rather than the consumer having to specify
a specific address.

Note

In IMS terminology this allows "topic hierarchies" to be created.

To enable this functionality set the property wi | d- car d-rout i ng- enabl ed in the j bm confi guration. xn file to
true. Thisistrue by default.

For more information on the wild card syntax take alook at Chapter 11 chapter, also see Section 9.1.49.

38

11

Understanding the JBoss Messaging Wildcard Syntax

JBoss Messaging uses a specific syntax for representing wildcards in security settings, address settings and when
creating consumers.

The syntax is similar to that used by AMQP [www.amgp.org].

A JBoss Messaging wildcard expression contains words delimited by the character *. ' (full stop).
The special characters'#' and ' also have special meaning and can take the place of aword.
The character '#' means 'match any sequence of zero or more words.

The character '*' means 'match asingle word'.

So the wildcard 'news.europe# would match 'news.europe, 'news.europe.sport’, 'news.europe.politics, and
'news.europe.politics.regional’ but would not match 'news.usa, 'news.usa.sport' nor 'entertainment’.

The wildcard 'news.*' would match 'news.europe’, but not 'news.europe.sport'.

The wildcard 'news*.sport’ would match ‘'news.europesport’ and aso ‘news.usasport, but not
'news.europe.politics.

39

www.amqp.org

12

Filter Expressions

JBoss Messaging provides a powerful filter language based on a subset of the SQL 92 expression syntax.

It is the same as the syntax used for IMS selectors, but the predefined identifiers are different. For documentation
on IMS selector syntax please the IMS javadoc for javax.jms.Message
[http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html].

Filter expressions are used in several places in JBossMessaging

« Predefined Queues. When pre-defining a queue, either in j bm confi guration. xm or jbmjnms. xm afilter ex-
pression can be defined for a queue. Only messages that match the filter expression will enter the queue.

e Core bridges can be defined with an optional filter expression, only matching messages will be bridged (see
Chapter 34).

« Diverts can be defined with an optiona filter expression, only matching messages will be diverted (see
Chapter 33).

« Filter are also used programmatically when creating consumers, queues and in severa places as described in
Chapter 29.

There are some differences between JM S selector expressions and JBoss Messaging core filter expressions. Where-
as JMS selector expressions operate on a JMS message, JBoss Messaging core filter expressions operate on a core

message.

The following identifiers can be used in a core filter expressions to refer to attributes of the core message in an ex-

pression:

* JBMPriority. To refer to the priority of a message. Message priorities are integers with valid values fromo -
9. 0 isthelowest priority and 9 isthe highest. E.g. JBMPriority = 3 AND ani mal = 'aardvark’

e JBMExpiration. Torefer to the expiration time of a message. The valueis along integer.

* JBMburabl e. To refer to whether amessage is durable or not. The valueis a string with valid values: DURABLE or
NON_DURABLE.

* JBMIi mest anp. The timestamp of when the message was created. The value is along integer.
e JBMsi ze. The size of amessage in bytes. The value is an integer.

Any other identifiers used in core filter expressions will be assumed to be properties of the message.

40

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

13

Persistence

In this chapter we will describe how persistence works with JBoss M essaging and how to configure it.

JBoss Messaging ships with a high performance journal. This journal has been implemented by the JBoss Mes-
saging team with a view to providing high performance in a messaging system. Since JBoss Messaging handles its
own persistence, rather than relying on a database or other 3rd party persistence engine, we have been able to tune
the journal to gain optimal performance for the persistence of messages and transactions.

A JBoss Messaging journal is an append only journal. It consists of a set of files on disk. Each file is pre-created to
afixed size and initialy filled with padding. As operations are performed on the server, e.g. add message, update
message, delete message, records are appended to the journal. When one journal file is full we move to the next
one.

Because records are only appended, i.e. added to the end of the journal we minimise disk head movement, i.e. we
mi nimise random access operations.

Making the file size configurable means that an optimal size can be chosen, i.e. making each file fit on adisk cylin-
der. Modern disk topologies are complex and we are not in control over which cylinder(s) the file is mapped onto
so thisis not an exact science. But by minimising the number of disk cylinders the file is using, we can minimise
the amount of disk head movement, since an entire disk cylinder is accessible simply by the disk rotating - the head
does not have to move.

As delete records are added to the journal, JBoss Messaging has a sophisticated file garbage collection algorithm
which can determine if a particular journal fileis needed any more - i.e. has al it's data been deleted in the same or
other files. If so, the file can be reclaimed and re-used.

JBoss Messaging also has a compaction agorithm which removes dead space from the journal and compresses up
the data so it takes up lessfiles on disk.

Thejournal also fully supports transactional operation if required, supporting both local and XA transactions.

The mgjority of the journal iswritten in Java, however we abstract out the interaction with the actual file system to
allow different pluggable implementations. We ship JBoss Messaging with two implementations:

* JavaNIO [http://en.wikipedia.org/wiki/New_l/Q].

The first implementation uses standard Java NIO to interface with the file system. This provides very good per-
formance and runs on any platform where there's a JDK.

e Linux Asynchronous 10

The second implementation uses a thin native code wrapper to talk to the Linux asynchronous IO library (AlO).
In a highly concurrent environment, AlO can provide better overall persistent throughput since it does not re-

41

http://en.wikipedia.org/wiki/New_I/O

Persistence

quire each individua transaction boundary to be synced to disk. Most disks can only support a limited number
of syncs per second, so a syncing approach does not scale well when the number of concurrent transactions
needed to be committed grows too large. With AlO, JBoss Messaging will be called back when the data has
made it to disk, allowing us to avoid explicit syncs altogether and simply send back confirmation of completion
when AlO informs us that the data has been persisted.

The AlO journal isonly available when running Linux kernel 2.6 or later and after having installed libaio (if it's
not already installed). For instructions on how to install libaio please see Section 13.3.

For more information on libaio please see Chapter 38.
libaio is part of the kernel project.

The standard JBoss Messaging core server uses two instances of the journal:

e Bindingsjournal.

Thisjournal is used to store bindings related data. That includes the set of queues that are deployed on the serv-
er and their attributes. It also stores data such as id sequence counters.

The bindings journal isawaysaNIO journal asit istypically low throughput compared to the message journal.
* Messagejournal.

This journal instance stores all message related data, including the message themselves and also duplicate id
caches.

By default JBoss Messaging will try and use an AlO journal. If AlO is not available, e.g. the platform is not
Linux with the correct kernel version or AlO has not been installed then it will automatically fall back to using
Java NIO which is available on any Java platform.

For large messages, JBoss Messaging persists them outside the message journal. Thisis discussed in Chapter 22.
JBoss Messaging also pages messages to disk in low memory situations. Thisis discussed in Chapter 23.

If no persistence is required at all, JBoss Messaging can also be configured not to persist any data at all to storage
as discussed in Section 13.4.

13.1. Configuring the bindings journal

The bindings journal is configured using the following attributesin j bm conf i gur ati on. xm

* bindings-directory
Thisisthe directory in which the bindings journal lives. The default value is dat a/ bi ndi ngs.
* create-bindings-dir

If thisis set to t rue then the bindings directory will be automatically created at the location specified in bi nd-

42

Persistence

i ngs-directory if it doesnot already exist. The default valueist rue

13.2. Configuring the message journal

The message journal is configured using the following attributesin j bm confi gur ati on. xm

journal -directory
Thisisthe directory in which the message journal lives. The default valueisdat a/ j our nal .

For the best performance, we recommend the journal is located on its own physical volume in order to minim-
ise disk head movement. If the journal is on a volume which is shared with other processes which might be
writing other files (e.g. bindings journal, database, or transaction coordinator) then the disk head may well be
moving rapidly between these files as it writes them, thus reducing performance.

When the message journal is stored on a SAN we recommend each journal instance that is stored on the SAN is
givenitsown LUN (logical unit).

create-journal -dir

If thisis set to t rue then the journal directory will be automatically created at the location specified in j our n-
al -directory if it does not already exist. The default valueist r ue

journal -type
Valid values are Nl O or ASYNCI O.

Choosing NI 0 chooses the Java NI1O journal. Choosing Al 0 chooses the Linux asynchronous 1O journal. If you
choose Al 0 but are not running Linux or you do not have libaio installed then JBoss Messaging will detect this
and automatically fall back to using NI .

journal -sync-transacti onal

If thisis set to true then JBoss Messaging will wait for al transaction data to be persisted to disk on a commit
before sending a commit response OK back to the client. The default valueistr ue.

journal -sync-non-transacti onal

If thisis set to true then JBoss Messaging will wait for any non transactional data to be persisted to disk on a
send before sending the response back to the client. The default value for thisisf al se.

journal -file-size
The size of each journa file in bytes. The default value for thisis 10485760 bytes (10MiB).
journal-mn-files

The minimum number of files the journal will maintain. When JBoss Messaging starts and there is no initial
message data, JBoss Messaging will pre-createj our nal - ni n-fil es number of files.

Persistence

Creating journal files and filling them with padding is afairly expensive operation and we want to minimise do-
ing this a run-time as files get filled. By precreating files, as one is filled the journal can immediately resume
with the next one without pausing to create it.

Depending on how much data you expect your queues to contain at steady state you should tune this number of
files to match that total amount of data.

j our nal - max- ai o

When using an AlO journal, write reguests are queued up before being submitted to Al1O for execution. Then
when AlO has completed them it calls JBoss Messaging back. This parameter controls the maximum number of
write requests that can be in the A1O gueue at any one time. If the queue becomes full then writes will block
until spaceisfreed up. This parameter has no meaning when using the N1O journal.

There is a limit and the total max AIO can't be higher than what is configured at the OS level
(/proc/sys/fs/aio-max-nr) usually at 65536.

The default value for thisis 500.
journal -ai o-buffer-tinmeout

Flush period on the internal AlO timed buffer, configured in nano seconds. For performance reasons we buffer
data before submitting it to the kernel in a single batch. This parameter determines the maximum amount of
time to wait before flushing the buffer, if it does not get full by itself in that time.

The default value for this paramater is 20000 nano seconds (i.e. 20 microseconds).
journal -ai o-fl ush-on-sync

If thisis set to true, the internal buffers are flushed right away when a sync request is performed. Sync requests
are performed on transactions if j ournal - sync-transactional is true, or on sending regular messages if
j our nal sync- non-transacti onal istrue.

JBoss Messaging was made to scale up to hundreds of producers. We try to use most of the hardware resources
by scheduling multiple writes and syncsin asingle OS call.

However in some use cases it may be better to not wait any data and just flush and write to the OS right away.
For example if you have a single producer writing small transactions. On this case it would be better to always
flush-on-sync.

The default value for this parameter ist al se.

journal -ai o-buffer-size

The size of the timed buffer on AlO. The default valueis 128ki B.
journal -conmpact-mn-files

The minimal number of files before we can consider compacting the journal. The compacting algorithm won't
start until you have at least j our nal - conpact -min-files

Persistence

The default for this parameter is 10
* journal -conpact - per cent age

The threshold to start compacting. When less than this percentage is considered live data, we start compacting.
Note also that compacting won't kick in until you have at least j our nal - conpact - ni n-fi | es data files on the
journa

The default for this parameter is 30

13.3. Installing AIO

The Java NIO journal gives great performance, but If you are running JBoss Messaging using Linux Kernel 2.6 or
later, we highly recommend you use the Al 0 journal for the best persistence performance especialy under high
concurrency.

It's not possible to use the A1O journal under other operating systems or earlier versions of the Linux kernel.

If you are running Linux kernel 2.6 or later and don't already have 1 i bai o installed, you can easily ingtall it using
the following steps:

Using yum, (e.g. on Fedora or Red Hat Enterprise Linux):

sudo yuminstall Iibaio

Using aptitude, (e.g. on Ubuntu or Debian system):

sudo apt-get install Iibaio

13.4. Configuring JBoss Messaging for Zero Persistence

In some situations, zero persistence is sometimes required for a messaging system. Configuring JBoss Messaging
to perform zero persistence is straightforward. Simply set the parameter persistence-enabled in jbm
configuration.xn tofalse.

Please note that if you set this parameter to false, then zero persistence will occur. That means no bindings data,
message data, large message data, duplicate id caches or paging datawill be persisted.

45

14

Configuring the Transport

JBoss Messaging has a fully pluggable and highly flexible transport layer and defines its own Service Provider In-
terface (SPI) to make plugging in a new transport provider relatively straightforward.

In this chapter we'll describe the concepts required for understanding JBoss Messaging transports and where and
how they're configured.

14.1. Understanding Acceptors

One of the most important concepts in JBoss Messaging transports is the acceptor. Let's dive straight in and take a
look at an acceptor defined in xml in the configuration filej bm confi gurati on. xm .

<accept or s>
<acceptor nane="netty">
<factory-cl ass>

org.j boss. nessagi ng.i ntegration.transports. netty. NettyAcceptor Factory
</factory-cl ass>

<param key="j bmrenoting. netty. port" val ue="5446" type="Integer"/>
</ accept or >
</ accept or s>

Acceptors are always defined inside an accept or s element. There can be one or more acceptors defined in the ac-
cept or s element. There's no upper limit to the number of acceptors per server.

Each acceptor defines away in which connections can be made to the JBoss Messaging server.
In the above example we're defining an acceptor that uses Netty to listen for connections at port 5446.

The accept or element contains a sub-element f act or y- cl ass, this element defines the factory used to create ac-
ceptor instances. In this case we're using Netty to listen for connections so we use the Netty implementation of an
Accept or Fact ory to do this. Basically, thef act ory- cl ass element determines which pluggable transport we're go-
ing to use to do the actual listening.

Theaccept or element can also be configured with zero or more par amsub-elements. Each par amelement defines a
key-value pair. These key-value pairs are used to configure the specific transport, the set of valid key-value pairs
depends on the specific transport be used and are passed straight through to the underlying transport.

Examples of key-value pairs for a particular transport would be, say, to configure the IP address to bind to, or the
port to listen at.

Keys are always strings and values can be of type Long, Integer, String or Bool ean.

46

Configuring the Transport

14.2. Understanding Connectors

Whereas acceptors are used on the server to define how we accept connections, connectors are used by a client to
define how it connects to a server.

Let'slook at aconnector defined in our j bm confi guration. xm file

<connect or s>
<connector name="netty">
<factory-cl ass>
org. j boss. nessagi ng. i ntegration.transports. netty. NettyConnector Factory
</factory-cl ass>
<param key="j bmrenoting. netty. port" val ue="5446" type="Integer"/>
</ connect or >
</ connect or s>

Connectors can be defined inside an connect or s € ement. There can be one or more connectors defined in the con-
nect or s element. There's no upper limit to the number of connectors per server.

Y ou make ask yourself, if connectors are used by the client to make connections then why are they defined on the
server? There are a couple of reasonsfor this:

* Sometimes the server acts as a client itself when it connects to another server, for example when one server is
bridged to ancther, or when a server takes part in a cluster. In this cases the server needs to know how to con-
nect to other servers. That's defined by connectors.

e |If you're using IMS and the server side JMS service to instantiate IMS ConnectionFactory instances and bind
them in JNDI, then when creating the JBossConnect i onFact ory it needs to know what server that connection
factory will create connections to.

That's defined by the connect or-ref element in the j bmj ns. xni file on the server side. Let's take alook at a
snipped from a jbmjns. xm file that shows a IMS connection factory that references our netty connector
defined in our j bm confi guration. xm file

<connection-factory nane="ConnectionFactory">
<connector-ref connector-name="netty"/>
<entries>
<entry name="Connecti onFactory"/>
<entry nane="XAConnecti onFactory"/>
</entries>
</ connecti on-factory>

14.3. Configuring the transport directly from the client side.

How do we configure acore d i ent Sessi onFact or y with the information that it needs to connect with a server?

Connectors are also used indirectly when directly configuring a core d i ent Sessi onFact ory to directly talk to a
server. Although in this case there's no need to define such a connector in the server side configuration, instead we

47

Configuring the Transport

just create the parameters and tell the d i ent Sessi onFact ory which connector factory to use.

Here's an example of creating a d i ent Sessi onFact ory which will connect directly to the acceptor we defined
earlier in this chapter, it uses the standard Netty TCP transport and will try and connect on port 5446 to localhost

(default):

Map<String, oject> connectionParans = new HashMap<String, Object>();

connecti onPar ans. put (org. j boss. nessagi ng.i ntegration.transports. netty. PORT_PROP_NAME,
5446) ;

Transport Configurati on transport Configurati on =
new Transport Confi gurati on(
"org.jboss. nessaging.integration.transports. netty. NettyConnectorFactory",
connecti onPar ans) ;
Cli ent Sessi onFactory sessionFactory = new Cient Sessi onFact ory(transport Confi guration);

Cli ent Sessi on session = sessi onFactory. createSession(...);

etc

Similarly, if you're using JMS, you can configure the JMS connection factory directly on the client side without
having to define a connector on the server side or define a connection factory inj bm j ms. xm :

Map<String, Ooject> connectionParans = new HashMap<String, Object>();
connecti onPar ans. put (org.j boss. nessagi ng.i ntegration.transports. netty. PORT_PROP_NAME, 5446);
Transport Configurati on transportConfiguration =

new Transport Confi gurati on(

"org.jboss. nessagi ng.integration.transports. netty. NettyConnect or Factory",
connect i onPar ans) ;

Connecti onFactory connectionFactory = new JBossConnecti onFactory(transportConfiguration);
Connecti on jnmsConnecti on = connecti onFactory. creat eConnecti on();

etc

14.4. Configuring the Netty transport

Out of the box, JBoss Messaging currently uses Netty [http://www.jboss.org/netty/], a high performance low level
network library.

Our Netty transport can be configured in several different ways, to use old (blocking) Java 10, or NIO
(non-blocking), also to use straightforward TCP sockets, SSL, or to tunnel over HTTP or HTTPS, on top of that we

also provide a servlet transport.

We believe this caters for the vast magjority of transport requirements.

14.4.1. Configuring Netty TCP

http://www.jboss.org/netty/

Configuring the Transport

Netty TCP is a simple unencrypted TCP sockets based transport. Netty TCP can be configured to use old blocking
Java O or non blocking Java N1O. We recommend you use the default Java NIO for better scalability.

If you're running connections across an untrusted network please bear in mind this transport is unencrypted. You
may want to look at the SSL or HTTPS configurations.

With the Netty TCP transport all connections are initiated from the client side. |.e. the server does not initiate any
connections to the client. This works well with firewall policies that typically only allow connections to be initiated
in one direction.

All the valid Netty transport keys are defined in the class
org. j boss. messagi ng. i ntegration. transports. netty. Transport Const ant s. The parameters can be used either
with acceptors or connectors. The following parameters can be used to configure Netty for smple TCP:

e jbmrenoting. netty. usenio. If thisistrue then Java non blocking NI1O will be used. If set to f al se than old
blocking Java O will be used.

We highly recommend that you use non blocking Java NIO. Java NIO does not maintain a thread per connec-
tion so can scale to many more concurrent connections than with old blocking 10. We recommend the usage of
Java 6 for NIO and the best scalability. The default value for this property ist r ue.

* jbmrenpting. netty. host. This specified the host name or ip address to connect to (when configuring a con-
nector) or to listen on (when configuring an acceptor). The default value for this property is | ocal host . Note
that if you want your servers accessible from other nodes, don't bind to localhost!

e jbmrenoting. netty. port. Thisspecified the port to connect to (when configuring a connector) or to listen on
(when configuring an acceptor). The default value for this property is5445.

* jbmrenpting. netty.tcpnodel ay. If this is true then Nagle's algorithm
[http://en.wikipedia.org/wiki/Nagle's_algorithm] will be enabled. The default value for this property ist r ue.

e jbmrenoting. netty.tcpsendbuffersize. This parameter determines the size of the TCP send buffer in bytes.
The default value for this property is 32768 bytes (32KiB).

TCP buffer sizes should be tuned according to the bandwidth and latency of your network. Here's a good link
that explains the theory behind this [http://www-didc.|bl.gov/TCP-tuning/].

In summary TCP send/receive buffer sizes should be calculated as:

buffer_size = bandwi dth * RTT.

Where bandwidth is in bytes per second and network round trip time (RTT) isin seconds. RTT can be easily
measured using the pi ng utility.

For fast networks you may want to increase the buffer sizes from the defaults.

e jbmrenoting. netty.tcpreceivebuffersize. Thisparameter determines the size of the TCP receive buffer in
bytes. The default value for this property is 32768 bytes (32KiB).

49

http://en.wikipedia.org/wiki/Nagle's_algorithm
http://www-didc.lbl.gov/TCP-tuning/

Configuring the Transport

14.4.2. Configuring Netty SSL

Netty SSL is similar to the Netty TCP transport but it provides additional security by encrypting TCP connections
using the Secure Sockets Layer SSL

Please see the examples for a full working example of using Netty SSL.

Netty SSL uses all the same properties as Netty TCP but adds the following additional properties:

* jbmrenpting.netty.ssl enabl ed. Must betrue to enable SSL.

e jbmrenoting. netty. keyst orepath. Thisisthe path to the SSL key store on the client which holds the client
certificates.

e jbmrenoting. netty. keyst orepassword. Thisisthe password for the client certificate key store on the client.
* jbmrenpting. netty.truststorepath. Thisisthe path to the trusted client certificate store on the server.
e jbmrenoting. netty.truststorepassword. Thisis the password to the trusted client certificate store on the

server.

14.4.3. Configuring Netty HTTP

Netty HTTP tunnels packets over the HTTP protocol. It can be useful in scenarios where firewalls only allow HT-
TP traffice to pass.

Please see the examples for a full working example of using Netty HTTP.

Netty HTTP uses the same properties as Netty TCP but adds the following additional properties:

e jbmrenpting. netty. httpenabl ed. Must betrue to enable HTTP.

* jbmrenoting. netty. httpclientidl etinme. How long a client can be idle before sending an empty http re-
quest to keep the connection aive

* jbmrenpting.netty. httpclientidl escanperiod. How often, in milliseconds, to scan for idle clients

e jbmrenoting. netty. httpresponsetine. How long the server can wait before sending an empty http response
to keep the connection alive

e jbmrenoting. netty. httpserverscanperiod. How often, in milliseconds, to scan for clients needing re-
sponses

* jbmrennoting. netty. httprequiressessionid. If true the client will wait after the first call to receive a ses-
sion id. Used the http connector is connecting to servlet acceptor (not recommended)

14.4.4. Configuring Netty Servlet

We also provide a Netty servlet transport for use with JBoss Messaging. The servlet transport allows JBoss Mes-

50

Configuring the Transport

saging traffic to be tunneled over HTTP to a servlet running in a servlet engine which then redirectsit to an in-VM
JBoss Messaging server.

The servlet trangport differs from the Netty HTTP transport in that, with the HTTP transport JBoss Messaging ef-
fectively acts a web server listening for HTTP traffic on, e.g. port 80 or 8080, whereas with the servlet transport
JBM traffic is proxied through a serviet engine which may already be serving web site or other applications. This
allows JBoss Messaging to be used where corporate policies may only allow a single web server listening on an
HTTP port, and this needs to serve al applications including messaging.

Please see the examples for afull working example of the servlet transport being used.

To configure a servlet engine to work the Netty Servlet transport we need to do the following things:

» Deploy the servlet. Here's an example web.xml describing aweb application that uses the servlet:

<?xm version="1.0" encodi ng="UTF-8""?>
<web-app xm ns="http://java. sun.conl xm / ns/j 2ee" xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

Xsi : schemaLocation="http://java. sun. comi xm /ns/j2ee http://java. sun.com xm / ns/j 2ee/ web-app_2_4.
versi on="2.4">

<servl et >
<servl et - nane>Net t ySer vl et </ ser vl et - nane>
<servl et-class>org. | boss. netty. channel . socket. http. Ht pTunnel i ngServl et </ servl et-cl ass>
<i ni t - paranp
<par am name>endpoi nt </ par am nanme>
<par am val ue>l ocal : or g. j boss. j bnx/ par am val ue>
</init-paranr
<l oad- on- st art up>1</1| oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - name>Net t ySer vl et </ servl et - nanme>
<url -pattern>/ JBMServl et</url-pattern>
</ servl et - mappi ng>
</ web- app>

* Wealso need to add a specia Netty invm acceptor on the server side configuration.

Here's a snippet from thej bm confi gurati on. xn file showing that acceptor being defined:

<accept or s>

<acceptor name="netty-invni>
<factory-cl ass>

org.j boss. messagi ng.i ntegration.transports. netty. NettyAcceptor Factory
</factory-cl ass>

<param key="j bm renoting. netty. usei nvni val ue="true" type="Bool ean"/>

<param key="j bmrenoting. netty. host" val ue="org.jboss.jbm type="String"/>
</ accept or >

</ accept or s>

e Lastly we need a connector for the client, this again will be configured in the j bm confi guration. xn file as
such:

<connect or s>

51

Configuring the Transport

<connector name="netty-servlet">
<factory-cl ass>
org. j boss. nessagi ng. i ntegration.transports. netty. NettyConnector Factory
</factory-cl ass>
<param key="j bmrenoting. netty. host" val ue="Il ocal host" type="String"/>
<param key="j bm renoting. netty. port" val ue="8080" type="Integer"/>
<param key="j bmrenoting. netty. useservlet" val ue="true" type="Bool ean"/>
<param key="j bm renoting. netty. servl et pat h"
val ue="/ nessagi ng/ JBMServl et" type="String"/>
</ connect or >

</ connect or s>

Heresalist of theinit params and what they are used for

» endpoint - This is the name of the netty acceptor that the serviet will forward its packets too. You can see it
matches the name of thej bm renot i ng. netty. host param.

The servlet pattern configured in the web. xni is the path of the URL that is used. The connector param
jbm renoting. netty. servl et pat h on the connector config must match this using the application context of the
web app if thereis one.

Its also possible to use the servlet transport over SSL. simply add the following configuration to the connector:

<connector name="netty-servlet">
<factory-cl ass>org.j boss. nessagi ng.integration.transports. netty. NettyConnector Factory</factory-c
<param key="j bm renoting. netty. host" val ue="1|ocal host" type="String"/>
<param key="jbmrenoting. netty. port" val ue="8443" type="Integer"/>
<param key="j bm renoting. netty. useservl et" val ue="true" type="Bool ean"/>
<param key="j bm renoting. netty.servl etpath" val ue="/nmessagi ng/ JBMservl et" type="String"/>
<par am key="j bm renoti ng. netty. ssl enabl ed" val ue="true" type="Bool ean"/>
<param key="j bm renoting. netty. keystorepath" value="path to a keystoree" type="String"/>
<par am key="j bm renoti ng. netty. keyst or epassword" val ue="keysore password" type="String"/>

</ connect or >

You will aso have to configure the Application server to use a KeyStore. Edit the server. xni file that can be
found under server/ def aul t/ depl oy/ j bossweb. sar Of the Application Server installation and edit the SSL/TLS
connector configuration to look like the following:

<Connect or protocol ="HTTP/ 1. 1" SSLEnabl ed="true"
port="8443" address="${j boss. bi nd. addr ess}"
scheme="htt ps" secure="true" clientAuth="fal se"
keystoreFil e="path to a keystore"
keyst or ePass="keyst ore password" sslProtocol = "TLS' />

In both cases you will need to provide a keystore and password. Take alook at the servlet sl example shipped with
JBoss Messaging for more detail.

52

15

Dead Connections and Session Multiplexing

In this section we will discuss connection time-to-live (TTL) and explain how JBoss Messaging deals with crashed
clients and clients which have exited without cleanly closing their resources. We'll aso discuss how JBoss Mes-
saging multiplexes severa sessions on a single connection.

15.1. Cleaning up Dead Connection Resources on the Server

Before a JBoss Messaging client application exits it is considered good practice that it should close its resourcesin
acontrolled manner, using afi nal I y block.

Here's an example of a well behaved core client application closing its session and session factory in a finaly
block:

Cl i ent Sessi onFactory sf = null;
Cli ent Session session = null;

try

{
sf = new d i ent Sessi onFactorylnpl (...);
session = sf.createSession(...);

. do sone stuff with the session...

}
finally
{
if (session != null)
{
sessi on. cl ose();
}
if (sf !'=null)
sf.close();
}
}

And here's an example of awell behaved JM S client application:

Connecti on jnsConnection = null;

try
{

Connecti onFact ory j nsConnecti onFactory = new JBossConnecti onFactory(...);

j msConnection = jnsConnecti onFactory. creat eConnecti on();

53

Dead Connections and Session Multiplexing

. do sone stuff with the connection...

}
finally

{

if (connection != null)

{

connection. cl ose();

}
}

Unfortunately users don't always write well behaved applications, and sometimes clients just crash so they don't
have a chance to clean up their resources!

If this occurs then it can leave server side resources, like sessions, hanging on the server. If these were not removed
they would cause aresource leak on the server and over time this result in the server running out of memory or oth-
€er resources.

We have to balance the requirement for cleaning up dead client resources with the fact that sometimes the network
between the client and the server can fail and then come back, allowing the client to reconnect. JBoss Messaging
supports client reconnection, so we don't want to clean up "dead" server side resources too soon or thiswill prevent
any client from reconnecting, as it won't be able to find its old sessions on the server.

JBoss Messaging makes all of this configurable. For each d i ent Sessi onFact ory we define a connection TTL. Ba
sicaly, the TTL determines how long the server will keep a connection alive in the absence of any data arriving
from the client. If the client isidle it will automatically send "ping" packets periodically to prevent the server from
closing it down. If the server doesn't receive any packets on a connection for the connection TTL time, then it will
automatically close al the sessions on the server that relate to that connection.

If you're using JIMS, the connection TTL is defined by the Connect i onTTL attribute on a JBossConnect i onFact ory
instance, or if you're deploying JM S connection factory instances direct into JNDI on the server side, you can spe-
cify it in the xml config, using the parameter connection-ttl .

The default value for connection ttl is300000ms, i.e. 5 minutes. A value of - 1 for Connecti onTTL means the server
will never time out the connection on the server side.

If you do not wish clients to be able to specify their own connection TTL, you can override all values used by a
global value set on the server side. This can be done by specifying the connecti on-ttl-overri de attribute in the
server side configuration. The default value for connection-ttl-override is-1 which means "do not override"
(i.e. let clients use their own values).

15.2. Detecting failure from the client side.

In the previous section we discussed how the client sends pings to the server and how "dead" connection resources
are cleaned up by the server. There's also another reason for pinging, and that's for the client to be able to detect
that the server or network has failed.

Aslong as the client is receiving packets from the server it will consider the connection to be till alive. If the con-
nection is idle the server will periodically send packets to the client to prevent the client from thinking the connec-
tion is dead.

Dead Connections and Session Multiplexing

If the client does not receive any packetsfor cli ent - f ai | ur e- check- peri od milliseconds then it will consider the
connection failed and will either initiate failover, or call any Fai | ur eLi st ener instances (or Except i onLi st ener
instancesif you are using JMS) depending on how it has been configured.

If you're using JMS it's defined by the O i ent Fai | ur eCheckPeri od attribute on a JBossConnecti onFactory in-
stance, or if you're deploying JM'S connection factory instances direct into JNDI on the server side, you can specify
itinthej bmj ms. xm configuration file, using the parameter cl i ent - f ai | ur e- check- peri od.

The default value for client failure check period iss000ms, i.e. 5 seconds. A value of - 1 means the client will never
fail the connection on the client side if no data is received from the server. Typically this is much lower than con-
nection TTL to allow clients to reconnect in case of transitory failure.

15.3. Session Multiplexing

Each d i ent Sessi onFact ory creates connections on demand to the same server as you create sessions. Each in-
stance will create up to a maximum of maxConnecti ons connections to the same server. Subsegquent sessions will
use one of the already created connections in a round-robin fashion.

To illustrate this, let's say maxConnect i ons is set to 8. The first eight sessions that you create will have a new un-
derlying connection created for them, the next eight you create will use one of the previously created connections.

The default value for maxConnecti ons is 8, if you prefer you can set it to alower value so each factory maintains
only one underlying connection. We choose a default value of 8 because on the server side each packet read from a
particular connection is read serially by the same thread, so, if al traffic from the clients sessions is multiplexed on
the same connection it will all be processed by the same thread on the server, which might not be a good use of
cores on the server. By choosing 8 then different sessions traffic from the same client can be processed by different
cores. If you have many different clients then this may not be relevant anyway.

To change the value of maxConnect i ons simply use the setter method on the d i ent Sessi onFact ory immediately
after constructing it, or if you are using JMS use the setter on the JBossConnect i onFact ory oOr specify the max-
connect i ons parameter in the connection factory xml configuration inj bm j ns. xm .

55

16

Resource Manager Configuration

JBoss Messaging has its own Resource Manager for handling the lifespan of XA transactions. When a transaction
is started the resource manager is notified and keeps a record of the transaction and its current state. It is possible in
some cases for a transaction to be started but the forgotten about. Maybe the client died and never came back. If
this happens then the transaction will just sit there indefinitely.

To cope with this JBoss Messaging can, if configured, scan for old transactions and rollback any it finds. The de-
fault for this is 60000 milliseconds (1 minute), i.e. any transactions older than 60 seconds are removed, however
this can be changed by editing the transaction-ti meout property in jbm configuration. xn . The property
transaction-ti meout - scan- peri od configures how often, in milliseconds, to scan for old transactions.

56

17

Flow Control

Flow control is used to limit the flow of data between a client and server, or a server and a server in order to pre-
vent the client or server being overwhelmed with data.

17.1. Consumer Flow Control

This controls the flow of data between the server and the client as the client consumes messages. For performance
reasons clients normally buffer messages before delivering to the consumer via the recei ve() method or asyn-
chronously via a message listener. If the consumer cannot process messages as fast as they are being delivered and
stored in the internal buffer, then you could end up with a situation where messages just keep building up and are
not processed for along time.

17.1.1. Window-Based Flow Control

By default, JBoss Messaging consumers buffer messages from the server in a client side buffer before the client
consumes them. This improves performance: otherwise every time the client consumes a message, JBoss Mes-
saging would have to go the server to request the next message. In turn, this message would then get sent to the cli-
ent side, if one was available.

A network round trip would be involved for every message and considerably reduce performance.

To prevent this, JBoss Messaging pre-fetches messages into a buffer on each consumer. The total maximum size of
messages (in bytes) that will be buffered on each consumer is determined by the consuner - wi ndow- si ze paramet-
er.

By default, the consuner - wi ndowsi ze isset to 1 MiB (1024 * 1024 bytes).

The value can be:

» -1 for an unbounded buffer
e 0 tonot buffer any messages. See Section 9.1.33 for working example of a consumer with no buffering.
» >0 for abuffer with the given maximum size in bytes.

Setting the consumer window size can considerably improve performance depending on the messaging use case.
As an example, |et's consider the two extremes:

Fast consumers
Fast consumers can process messages as fast as they consume them (or even faster)

57

Flow Control

To dlow fast consumers, set the consuner - wi ndowsi ze to -1. This will allow unbounded message buffering
on theclient side.

Use this setting with caution: it can overflow the client memory if the consumer is not able to process messages
asfast asit receives them.

Slow consumers
Slow consumers takes significant time to process each message and it is desirable to prevent buffering mes-
sages on the client side so that they can be delivered to another consumer instead.

Consider a situation where a queue has 2 consumers 1 of which isvery slow. Messages are delivered in around
robin fashion to both consumers, the fast consumer processes all of its messages very quickly until its buffer is
empty. At this point there are still messages awaiting to be processed by the slow consumer which could be be-
ing consumed by the other consumer.

To alow slow consumers, set the consurer - wi ndow- si ze to O (for no buffer at all). Thiswill prevent the slow
consumer from buffering any messages on the client side. Messages will remain on the server side ready to be
consumed by other consumers.

Most of the consumers cannot be clearly identified as fast or slow consumers but are in-between. In that case, set-
ting the value of consuner - wi ndow si ze to optimize performance depends on the messaging use case and requires
benchmarks to find the optimal value, but avalue of 1IMiB isfinein most cases.

17.1.1.1. Using Core API

If JBoss Messaging Core APl is used, the consumer window size is specified by dient SessionFact -
ory. set Consurer W ndowSi ze() method and some of the d i ent Sessi on. cr eat eConsuner () methods.

17.1.1.2. Using JMS

if INDI isused to look up the connection factory, the consumer window size is configured inj bm j ms. xni :

<connecti on-factory name="Connecti onFactory">
<connector-ref connector-nanme="netty-connector"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>

<l-- Set the consunmer w ndow size to O to have *no* buffer on the client side -->

<consuner - w ndow si ze>0</ consuner - Wi ndow- si ze>
</ connection-factory>

If the connection factory is directly instantiated, the consumer window size is specified by JBossConnect i onFact -
ory. set Consurer W ndowSi ze() method.

Please see Section 9.1.33 for an example which shows how to configure JBoss Messaging to prevent consumer buf-
fering when dealing with slow consumers.

17.1.2. Rate limited flow control

58

Flow Control

It is aso possible to control the rate at which a consumer can consumer messages. This is aform of throttling and
can be used to make sure that a consumer never consumes messages at a rate faster than the rate specified.

The rate must be a positive integer to enable and is the maximum desired message consumption rate specified in
units of messages per second. Setting thisto - 1 disablesrate limited flow control. The default valueis- 1.

Please see Section 9.1.26 for aworking example of limiting consumer rate.

17.1.2.1. Using Core API

If the JBoss Messaging core APl is being used the rate can be set via the dientSessionFact-
ory. set Consuner MaxRat e(i nt consuner MaxRate) method or aternatively via some of the dient Ses-
si on. creat eConsuner () methods.

17.1.2.2. Using JMS
If INDI is used to look up the connection factory, the max rate can be configured inj bm j ns. xni :

<connection-factory nane="Connecti onFactory">
<connector-ref connector-nanme="netty-connector"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<I-- W |imt consuners created on this connection factory to consune nessages
at a maxi mumrate
of 10 nmessages per sec -->
<consuner - max- r at e>10</ consuner - max- r at e>
</ connection-factory>

If the connection factory is directly instantiated, the max rate size can be set via the JBossConnect i onFact -
ory. set Consurer MaxRat e(i nt consumer MaxRat e) method.

Note

Rate limited flow control can be used in conjunction with window based flow control. Rate limited flow
control only effects how many messages a client can consume in a second and not how many messages are
inits buffer. So if you had aslow rate limit and a high window based limit the clients internal buffer would
soon fill up with messages.

Please see Section 9.1.26 for an example which shows how to configure JBoss Messaging to prevent consumer buf-
fering when dealing with slow consumers.

17.2. Producer flow control

JBoss Messaging aso can limit the amount of data sent from a client to a server to prevent the server being over-
whelmed.

17.2.1. Window based flow control

JBoss Messaging clients maintain a buffer of commands that have been sent to the server, thus provides a form of

59

Flow Control

flow control. Please see Chapter 18 for more information on this.

17.2.2. Rate limited flow control

JBoss Messaging also allows the rate a producer can emit message to be limited, in units of messages per second.
By specifying such arate, JBoss Messaging will ensure that producer never produces messages at a rate higher than
that specified.

The rate must be a positive integer to enable and is the maximum desired message consumption rate specified in
units of messages per second. Setting thisto - 1 disables rate limited flow control. The default valueis- 1.

Please see the Section 9.1.30 for aworking example of limiting producer rate.

17.2.2.1. Using Core API

If the JBoss Messaging core APl is being used the rate can be set via the dientSessionFact-
ory.set Producer MaxRate(i nt consumer MaxRate) method or aternatively via some of the dient Ses-
si on. creat eProducer () methods.

17.2.2.2. Using JMS

If INDI is used to look up the connection factory, the max rate can be configured inj bm j ns. xni :

<connecti on-factory nanme="Connecti onFactory">
<connector-ref connector-nanme="netty-connector"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<I-- W |imt producers created on this connection factory to produce nessages
at a maxi mumrate
of 10 messages per sec -->
<pr oducer - max- r at e>10</ pr oducer - nax- r at e>
</ connecti on-factory>

If the connection factory is directly instantiated, the max rate size can be set via the JBossConnect i onFact -
ory. set Producer MaxRat e(i nt consunmer MaxRat e) method.

60

18

Command Buffering

As JBoss Messaging clients send commands to their servers they store each sent command in an in-memory buffer.
In the case that connection failure occurs and the client subsequently reconnects to the same server or fails over
onto areplica server, as part of the reconnection protocol the server informs the client during reconnection with the
id of the last command it successfully received from that client.

If the client has sent more commands than were received before failover it can replay any sent commands from its
buffer so that the client and server can reconcile their states.

The size of this buffer is configured by the Producer W ndowsi ze parameter, when the server has received pr odu-
cer W ndowsSi ze bytes of commands and processed them it will send back a command confirmation to the client,
and the client can then free up space in the buffer.

If you are using JMS and you're using the JM S service on the server to load your JMS connection factory instances
into JNDI then this parameter can be configured in j bm j ms. xni using the element pr oducer - wi ndow-si ze a. If
you're using JMS but not using JNDI then you can set these values directly on the JBossConnect i onFact ory in-
stance using the appropriate setter method.

If you're using core you can set these values directly on the i ent Sessi onFact ory instance using the appropriate
setter method.

The send window is specified in bytes, and has a default value of 1M B.

When the send buffer becomes full, any attempts to send more commands from the client will block until the client
receives a confirmation from the server and clears out the buffer. Because of the blocking, the command buffer per-
formsatypeof f1 ow control , preventing the client from overwhelming the server with commands.

Setting this parameter to - 1 disables any flow control on sending.

61

19

Guarantees of Transactional and Non-Transactional
Sends and Asynchronous Send Acknowledgements

19.1. Guarantees of Transaction Completion

When committing or rolling back a transaction with JBoss Messaging, the request to commit or rollback is sent to
the server, and the call will block on the client side until a response has been received from the server that the com-
mit or rollback was executed.

When the commit or rollback is received on the server, it will be committed to the journal, and depending on the
value of the parameter j our nal - sync-transacti onal the server will ensure that the commit or rollback is durably
persisted to storage before sending the response back to the client. If this parameter has the value f al se then com-
mit or rollback may not actually get persisted to storage until some time after the response has been sent to the cli-
ent. In event of server failure this may mean the commit or rollback never gets persisted to storage. The default
value of this parameter ist r ue so the client can be sure al transaction commits or rollbacks have been persisted to
storage by the time the call to commit or rollback returns.

Setting this parameter to f al se can improve performance at the expense of some loss of transaction durability.

This parameter isset inj bm conf i gurati on. xni

19.2. Guarantees of Non Transactional Message Sends

If you are sending messages to a server using a non transacted session, JBoss Messaging can be configured to block
the call to send until the message has definitely reached the server, and a response has been sent back to the client.
This can be configured individually for persistent and non-persistent messages, and is determined by the following
two parameters:

e Bl ockOnPersi st ent Send. If thisis set to t rue then all calls to send for persistent messages on non transacted
sessions will block until the message has reached the server, and a response has been sent back. The default
valueisf al se.

* Bl ockOnNonPer si st ent Send. If thisis set to true then all calls to send for non-persistent messages on non
transacted sessions will block until the message has reached the server, and a response has been sent back. The
default valueisft al se.

Setting block on sends to t rue can reduce performance since each send requires a network round trip before the
next send can be performed. This means the performance of sending messages will be limited by the network round
trip time (RTT) of your network, rather than the bandwidth of your network. For better performance we recom-

62

Guarantees of Transactional and Non-Transactional Sends and

mend either batching many messages sends together in a transaction since with a transactional session, only the
commit / rollback blocks not every send, or, using JBoss Messaging's advanced asynchronous send acknowledge-
ments feature described in Section 19.4.

If you are using JMS and you're using the IMS service on the server to load your JM S connection factory instances
into JNDI then these parameters can be configured inj bm j ms. xm using the elements bl ock- on- per si st ent - send
and bl ock- on- non- per si st ent - send. If you're using JMS but not using JNDI then you can set these values dir-
ectly on the JBossConnect i onFact ory instance using the appropriate setter methods.

If you're using core you can set these values directly on the d i ent Sessi onFact ory instance using the appropriate
setter methods.

When the server receives a message sent from a non transactional session, and that message is persistent and the
message is routed to at least one durable queue, then the server will persist the message in permanent storage. If the
journal parameter j our nal - sync- non-transactional iSSettotrue the server will not send a response back to the
client until the message has been persisted and the server has a guarantee that the data has been persisted to disk.
The default value for this parameter ist al se.

19.3. Guarantees of Non Transactional Acknowledgements

If you are acknowledging the delivery of a message at the client side using a non transacted session, JBoss Mes-
saging can be configured to block the call to acknowledge until the acknowledge has definitely reached the server,
and a response has been sent back to the client. Thisis configured with the parameter Bl ocknAcknow edge. If this
isset tot rue then al calls to acknowledge on non transacted sessions will block until the acknowledge has reached
the server, and a response has been sent back. Y ou might want to set thisto t r ue if you want to implement a strict
at most once delivery policy. The default valueisf al se

19.4. Asynchronous Send Acknowledgements

If you are using a non transacted session but want a guarantee that every message sent to the server has reached it,
then, as discussed in Section 19.2, you can configure JBoss Messaging to block the call to send until the server has
received the message, persisted it and sent back aresponse. This works well but has a severe performance penalty -
each call to send needs to block for at least the time of a network round trip (RTT) - the performance of sending is
thus limited by the latency of the network, not limited by the network bandwidth.

Let's do alittle bit of maths to see how severe that is. We'll consider a standard 1Gib ethernet network with a net-
work round trip between the server and the client of 0.25 ms.

With a RTT of 0.25 ms, the client can send at most 1000/ 0.25 = 4000 messages per second if it blocks on each
message send.

If each message is < 1500 bytes and a standard 1500 bytes MTU size is used on the network, then a 1GiB network
has a theoretical upper limit of (1024 * 1024 * 1024 / 8) / 1500 = 89478 messages per second if messages are sent
without blocking! These figures aren't an exact science but you can clearly see that being limited by network RTT
can have serious effect on performance.

To remedy this, JBoss Messaging provides an advanced new feature called asynchronous send acknowl edgements.
With this feature, JBoss Messaging can be configured to send messages without blocking in one direction and

63

Guarantees of Transactional and Non-Transactional Sends and

asynchronously getting acknowledgement from the server that the messages were received in a separate stream. By
de-coupling the send from the acknowledgement of the send, the system is not limited by the network RTT, but is
limited by the network bandwidth. Consequently better throughput can be achieved than is possible using a block-
ing approach, while at the same time having absol ute guarantees that messages have successfully reached the serv-
er.

19.4.1. Asynchronous Send Acknowledgements

To use the feature using the core AP, you implement the interface
org. j boss. messagi ng. core. cl i ent . SendAcknow edgenent Handl er and set a handler instance on your d i ent -
Sessi on.

Then, you just send messages as normal using your d i ent Sessi on, and as messages reach the server, the server
will send back an acknowledgment of the send asynchronously, and some time later you are informed at the client
side by JBoss Messaging calling your handler's sendAcknow edged(d i ent Message nessage) method, passing in a
reference to the message that was sent.

Please see Section 9.1.42 for afull working example.

20

Message Redelivery and Undelivered Messages

Messages can be delivered unsuccessfully (e.g. if the transacted session used to consume them is rolled back). Such
amessage goes back to its queue ready to be redelivered. However, this meansit is possible for a message to be de-
livered again and again without any success and remain in the queue, clogging the system.

There are 2 ways to deal with these undelivered messages.

¢ Deayed redelivery.

It is possible to delay messages redelivery to let the client some time to recover from transient failures and not
overload its network or CPU resources

¢ Dead Letter Address.

It is also possible to configure a dead letter address so that after a specified number of unsuccessful deliveries,
messages are removed from the queue and will not be delivered again

Both options can be combined for maximum flexibility.

20.1. Delayed Redelivery

Delaying redelivery can often be useful in the case that clients regularly fail or rollback. Without a delayed redeliv-
ery, the system can get into a "thrashing” state, with delivery being attempted, the client rolling back, and delivery
being re-attempted ad infinitum in quick succession, consuming valuable CPU and network resources.

20.1.1. Configuring Delayed Redelivery

Delayed redelivery is defined in the address-setting configuration:

<l-- delay redelivery of nessages for 5s -->
<address-setting match="j ns. queue. exanpl eQueue" >
<redel i very-del ay>5000</r edel i very- del ay>
</ addr ess-setting>
If aredel i very-del ay is specified, JBoss Messaging will wait this delay before redelivering the messages
By default, thereisno redelivery delay (redel i ver y- del ayis set to 0).

Address wildcards can be used to configure redelivery delay for a set of addresses (see Chapter 11).

65

Message Redelivery and Undelivered Messages

20.1.2. Example

See Section 9.1.12 for an example which shows how delayed redelivery is configured and used with IMS.

20.2. Dead Letter Addresses

To prevent aclient infinitely receiving the same undelivered message (regardless of what is causing the unsuccess-
ful deliveries), messaging systems define dead |etter messages: after a specified unsuccessful delivery attempts, the
message is removed from the queue and send instead to a dead letter address.

Any dead letter messages can then be diverted to queue(s) where they can later be perused by the system adminis-
trator for action to be taken.

JBoss Messaging's addresses can be assigned a dead letter address. Once the messages have be unsuccessfully de-
livered for a given number of attempts, they are removed from the queue and sent to the dead letter address. These
dead letter messages can later be consumed for further inspection.

20.2.1. Configuring Dead Letter Addresses

Dead letter address is defined in the address-setting configuration:

<I'-- undel i vered nessages in exanpl eQueue will be sent to the dead |etter address
deadLett er Queue after 3 unsuccessful delivery attenpts

oo

<address-setting match="j ns. queue. exanpl eQueue" >
<dead- | ett er-address>j ns. queue. deadlLet t er Queue</ dead- | ett er - addr ess>
<max- del i very- att enpt s>3</ max-del i very-att enpt s>

</ addr ess-setting>

If adead-1etter-address isnot specified, messages will removed after max- del i very- at t enpt s unsuccessful at-
tempts.

By default, messages are redelivered 10 times at the maximum. Set nax- del i very- at t enpt s to -1 for infinite rede-
liveries.

For example, a dead letter can be set globally for a set of matching addresses and you can set nax- del i v-
ery-attenpts to-1for aspecific address setting to allow infinite redeliveries only for this address.

Address wildcards can be used to configure dead letter settings for a set of addresses (see Chapter 11).

20.2.2. Dead Letter Properties

Dead |etter messages which are consumed from a dead |etter address have the following property:

e _JBM ORI G DESTI NATI ON

a String property containing the original destination of the dead letter message

66

Message Redelivery and Undelivered Messages

20.2.3. Example

See Section 9.1.11 for an example which shows how dead letter is configured and used with IMS.

20.3. Delivery Count Persistence

In normal use, JBoss Messaging does not update delivery count persistently until a message is rolled back (i.e. the
delivery count is not updated before the message is delivered to the consumer). In most messaging use cases, the
messages are consumed, acknowledged and forgotten as soon as they are consumed. In these cases, updating the
delivery count persistently before delivering the message would add an extra persistent step for each message de-
livered, implying a significant performance penalty.

However, if the delivery count is not updated persistently before the message delivery happens, in the event of a
server crash, messages might have been delivered but that will not have been reflected in the delivery count. Dur-
ing the recovery phase, the server will not have knowledge of that and will deliver the message with redel i ver ed
settofal se whileit should bet r ue.

As this behavior breaks strict IMS semantics, JBoss Messaging allows to persist delivery count before message de-
livery but disabled it by default for performance implications.

To enableit, set persi st-del i very-count - bef ore-del i very totrue injbm configuration. xm :

<persi st-delivery-count-before-delivery>true</persist-delivery-count-before-delivery>

67

21

Message Expiry

Messages can be set with an optional time to live when sending them. Such messages will be retained in the mes-
saging system until their timeto liveis reached.

JBoss Messaging's addresses can be assigned a expiry address so that, when messages are expired, they are re-
moved from the queue and sent to the expiry address. Many different queues can be bound to an expiry address.
These expired messages can later be consumed for further inspection.

21.1. Message Expiry

Using JBoss Messaging Core API, you can set an expiration time directly on the message:

/1 message will expire in 5000ns from now
nmessage. set Expirati on(SystemcurrentTineMI1is() + 5000);

JM S MessageProducer allowsto set a TimeToLive for the messages it sent:

/1 messages sent by this producer will be retained for 5s (5000nms) before expiration
producer. set Ti meTolLi ve(5000) ;

Expired messages which are consumed from an expiry address have the following properties:

e _JBM ORI G DESTI NATI ON
a String property containing the original destination of the expired message
e _JBM ACTUAL_EXPI RY

alLong property containing the actual expiration time of the expired message

21.2. Configuring Expiry Addresses

Expiry address are defined in the address-setting configuration:

<I-- expired nmessages in exanpl eQueue wll be sent to the expiry address expiryQeue -->
<address-setting natch="j ns. queue. exanpl eQueue" >

<expi ry- address>j ns. queue. expi r yQueue</ expi ry- addr ess>
</ addr ess-setting>

68

Message Expiry

If messages are expired and no expiry address is specified, messages are ssmply removed from the queue. Address
wildcards can be used to configure expiry address for a set of addresses (see Chapter 11).

21.3. Configuring The Expiry Reaper Thread

A reaper thread is periodically inspecting the queues to check if messages have expired.

The reaper thread can be configured with the following propertiesin j bm confi gurati on. xm

®* message- expiry-scan-period
How often the queues will be scanned to detect expired messages (in milliseconds, default is 30000ms)
®* message-expiry-thread-priority

The reaper thread priority (it must be between 0 and 9, 9 being the highest priority, default is 3)

21.4. Example

See Section 9.1.28 for an example which shows how message expiry is configured and used with IMS.

69

22

Large Messages

JBoss Messaging supports sending and receiving of huge messages, even when the client and server are running
with limited memory. The only limit to the size of a message that can be sent or consumed is the amount of disk
space you have available. We have tested sending and consuming messages up to 8 GiB in size with a client and
server running in just 50MiB of RAM!

To send alarge message, the user can set an | nput St r eamon a message body, and when that message is sent, JBoss
Messaging will read the | nput Stream A Fil el nput St r eam could be used for example to send a huge message
from ahuge file on disk.

Asthe I nput Streamis read the data is sent to the server as a stream of fragments. The server persists these frag-
ments to disk as it receives them and when the time comes to deliver them to a consumer they are read back of the
disk, aso in fragments and sent down the wire. When the consumer receives a large message it initially receives
just the message with an empty body, it can then set an cut put St r eamon the message to stream the huge message

body to afile on disk or elsewhere. At no time is the entire message body stored fully in memory, either on the cli-
ent or the server.

22.1. Configuring the server

Large messages are stored on a disk directory on the server side, as configured on the main configuration file.

The configuration property | ar ge- mressages- di r ect or y specifies where large messages are stored.

<configuration xm ns="urn:jboss: nessagi ng"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="urn: j boss: nessagi ng /schema/j bm confi gurati on. xsd">

<| ar ge- message-di rectory> *** type any fol der you choose *** </|arge-nessage-directory>

</ configuration

By default the large message directory isdat a/ | ar genessages

For the best performance we recommend large messages directory is stored on a different physical volume to the
message journal or paging directory.

22.2. Setting the limits

70

Large Messages

Any message large than a certain size is considered a large message. Large messages will be split up and sent in
fragments. Thisis determined by the parameter ni n- | ar ge- nessage- si ze

The default value is 100KiB.

22.2.1. Using Core API

If the JBoss Messaging Core API is used, the minimal large message size is specified by d i ent Sessi onFact -

ory.set M nLar geMessageSi ze.

Cli ent Sessi onFactory factory =

new C i ent Sessi onFact oryl npl (new

Transport Confi guration(NettyConnector Factory. cl ass. get Name()), null);
factory. set M nLar geMessageSi ze(25 * 1024);

Section 14.3 will provide more information on how to instantiate the session factory.

22.2.2. Using JMS

If INDI is used to look up the connection factory, the minimum large message sizeis specified inj bm j ns. xni

<connection-factory name="Connecti onFactory">
<connector-ref connector-nanme="netty"/>
<entries>

<entry nanme="Connecti onFactory"/>

<entry nanme="XAConnecti onFactory"/>
</entries>

<m n- | ar ge- nessage- si ze>250000</ m n- | ar ge- mnessage- si ze>
</ connection-factory>

If the connection factory is being instantiated directly, the minimum large message size is specified by JBossCon-
necti onFactory. set M nLar geMessageSi ze.

22.3. Streaming large messages

JBoss Messaging supports setting the body of messages using input and output streams (j ava. | ang. i o)
These streams are then used directly for sending (input streams) and receiving (output streams) messages.

When receiving messages there are 2 ways to deal with the output stream you may choose to block while the output
stream is recovered using the method d i ent Message. saveCut put St ream or aternatively using the method d i -
ent Message. set Qut put st r eamwhich will asynchronously write the message to the stream. If you choose the latter
the consumer must be kept alive until the message has been fully received.

You can use any kind of stream you like. The most common use case is to send files stored in your disk, but you
could also send things like JDBC Blabs, Socket I nput St r eam things you recovered from HTTPRequest s €tc. Any-
thing as long as it implementsj ava. i o. I nput St reamfor sending messages or j ava. i 0. Qut put St r eamfor receiv-
ing them.

71

Large Messages

22.3.1. Streaming over Core API

The following table shows a list of methods available at d i ent Message which are also available through JMS by
the use of object properties.

Table 22.1. org.jboss.messaging.cor e.client.ClientM essage API

Name Description JM S Equivalent Property

setBodyl nputStream(InputStream) — Set the InputStream used to read a JMS JBM_InputStream
message body when sending it.

setOutputStream(OutputStream) Set the OutputStream that will re- | IMS JBM_OutputStream
ceive the body of a message. This
method does not block.

saveQutputStream(OutputStream) Save the body of the message to JMS JBM_SaveStream
the aut put Stream It will block un-
til the entire content is transferred
to the cut put St ream

To set the output stream when receiving a core message:

d i ent Message nmsg = consuner.receive(...);

/1l This will block here until the streamwas transferred
neg. saveQut put St r ean{ soneQut put St ream ;

d i ent Message nmsg2 = consuner.receive(...);

[l This will not wait the transfer to finish
nsg. set Qut put St r eam(someQt her Qut put St ream ;

Set the input stream when sending a core message:

Cl i ent Message nsg = sessi on. creat eMessage();
neg. set | nput St r ean{ dat al nput St ream ;

22.3.2. Streaming over JMS

When using IM S, JBoss Messaging maps the streaming methods on the core API (see Table 22.1) by setting object
properties. You can use the method Message. set bj ect Proper ty to Set the input and output streams.

72

Large Messages

The 1 nput St ream can be defined through the IMS Object Property JIMS _JBM _InputStream on messages being
sent:

Byt esMessage nessage = session. cr eat eByt esMessage();

Filelnput Stream fil el nput Stream = new Fil el nput Strean(fil el nput);

Buf f er edl nput St r eam buf f er edl nput = new Buf f eredl nput Strean(fil el nput Strean);
nmessage. set oj ect Property("JMS_JBM | nput Streani, bufferedl nput);

sonePr oducer . send(message) ;

The aut put St ream can be set through the JMS Object Property IMS _JBM_SaveStream on messages being re-
ceived in ablocking way.

Byt esMessage nessageRecei ved = (Byt esMessage) nessageConsuner . recei ve(120000) ;
File outputFile = new Fil e("huge_nessage_recei ved. dat");

Fi |l eQut put Stream fil eCQut put Stream = new Fi | eQut put St reanm(out put Fil e) ;

Buf f er edQut put St r eam buf f er edQut put = new Buf f er edQut put Streant(fil eQut put Strean);

/1 This will block until the entire content is saved on disk
nmessageRecei ved. set Cbj ect Property("JMS_JBM SaveStreant, bufferedQutput);

Setting the aut put St reamcould aso be done in anon blocking way using the property IMS JBM_InputStream.

/1 This won't wait the streamto finish. You need to keep the consuner active.
nmessageRecei ved. set Obj ect Property("JMS_JBM | nput Streant', bufferedQut put);

Note

When using JMS, Streaming large messages are only supported on St r eamvessage and Byt esMessage.

22.4. Streaming Alternative

If you choose not to use the I nput St r eam Or Qut put St r eam capability of JBoss Messaging You could still access
the data directly in an aternative fashion.

On the Core AP just get the bytes of the body as you normally would.

d i ent Message nmsg = consuner.receive();

byte[] bytes = new byte[1024];
for (int i =0 ; i < meg.getBodySize(); i += bytes.|ength)
{

nsg. get Body() . readByt es(byt es);

/1 \Whatever you want to do with the bytes

73

Large Messages

If using IMS API, Byt esMessage and St r eanMessage alSo supportsit transparently.

Byt esMessage rm = (Byt esMessage) cons. recei ve(10000) ;
byte data[] = new byte[1024];

for (int i = 0; i < rmgetBodyLength(); i += 1024)
{

int nunber O Bytes = rmreadBytes(data);
/1 Do whatever you want with the data

}

22.5. Other Types of Messages

JBoss Messaging supports large messages of type Text Message, Obj ect Message and MapMessage transparently.
However those types of message will require afull reconstruction in memory in order to work properly.

For example: You may choose to send a 1IMiB String over a TextMessage. When you read the message Java will
need to parse the body of the message back into a String, so you need to have enough memory to alocate your
large messages when using those types. If you use Byt esMessage Or St r eamvessage this restriction won't apply.

22.6. Resending a large message

As large messages are broken into smaller packets the fragmented packets are delivered individually from server to
client. The message fragments are not kept in memory so once they are delivered it is not possible to resend them.

As aresult resending alarge messages after consumption will not work as seen on this example:

Byt esMessage bm = (Byt esMessage) cons. recei ve(1000);
bm set Obj ect Property("JMS_JBM SaveStreant, bufferedQutput);

/1] This will not work! The body streaming is already gone!
sonmeQt her Producer. send(bm); // resending the nessage to another destination;

22.7. Large message example

Please see Section 9.1.21 for an example which shows how large message is configured and used with JIMS.

74

23

Paging

JBoss Messaging transparently supports huge queues containing millions of messages while the server is running
with limited memory.

In such a situation it's not possible to store all of the queues in memory at any one time, so JBoss Messaging trans-
parently pages messages into and out of memory as they are needed, thus alowing massive queues with a low
memory footprint.

JBoss Messaging will start paging messages to disk, when either a) the size of the queue reaches a total configured
maximum size or b) Thetotal size of all queues reaches a configured maximum size.

These two modes of operation are called Address Paging Mode and Global Paging Mode .

23.1. Page Files

Messages are stored per address on the file system. Each address has an individual folder where messages are
stored in multiple files (page files). Each file will contain messages up to a max configured size.
(page- si ze- byt es). When reading page-files all messages on the page-file are read, routed and the file is deleted
as soon as the messages are recovered.

23.2. Global Paging Mode

JBoss Messaging goes into global paging mode when the total memory used by all queues reaches a configured
maximum value, determined by pagi ng- max- gl obal - si ze- byt es.

These messages are depaged back into memory once enough memory (gl obal - page- si ze) has been freed up.

23.2.1. Configuration

Global paging parameters are specified on the main configuration file.

<configuration xm ns="urn:jboss: nessagi ng"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schere- i nst ance"
xsi : schenalLocati on="ur n: j boss: nessagi ng / schena/j bm confi gurati on. xsd">

<pagi ng- max- gl obal - si ze- byt es>20485760</ pagi ng- max- gl obal - si ze- byt es>
<gl obal - page- si ze>1048576</ gl obal - page- si ze>

75

Paging

Table 23.1. Paging Configuration Parameters

Property Name

pagi ng-directory

Description

Where page files are stored. JBoss
Messaging will create one folder
for each address being paged under
this configured location.

Default

data/paging

pagi ng- max- gl obal - si ze- byt es

gl obal - page- si ze

JBoss Messaging enters into global
page mode as soon as the tota
memory consumed by messages
hits this value.

The standard size of a page-file.
JBoss Messaging will only read
messages when there is enough
space to read at least one page file,
determined by this value.

-1 (disabled)

10MiB (10 * 1024 * 1024 bytes)

23.3. Address Paging Mode

It is also possible to configure paging at the address level. As soon as messages delivered to an address exceed the
configured size, that address alone goes into page maode.

23.3.1. Configuration

Address level configuration is done at the address settings.

<addr ess-settings>

<address-setting nmatch="j ns. soneaddr ess" >
<max- si ze- byt es>- 1</ max- si ze- byt es>
<page- si ze- byt es>10485760</ page- si ze- byt es>
<dr op- messages- when-f ul | >10485760</ dr op- nessages- when-ful | >

</ addr ess-setting>
</ addr ess-settings>

Thisisthelist of available parameters on the address settings.

Table 23.2. Paging Address Settings

Property Name

max- si ze

Description

Default

What's the max memory the ad- -1 (disabled)

dress could have before entering
onh page mode.

76

Paging

Property Name Description Default

page- si ze- byt es The size of each page file used on 10MiB (10 * 1024 * 1024 bytes)
the paging system

dr op- messages- when-f ul | if true, messages are dropped in- fase

stead of paged when used- menory
is greater than max- si ze

23.4. Caution with Addresses with Multiple Queues

When a message is routed to an address that has multiple queues bound to it, e.g. a IMS subscription, there is only
1 copy of the message in memory. Each queue only deals with a reference to this. Because of this the memory is
only freed up once all queues referencing the message have delivered it. This means that if not all queues deliver
the message we can end up in a state where messages to not get delivered.

For example:

e Anaddress has 10 queues

« One of the queues does not deliver its messages (maybe because of a slow consumer).
* Messages continually arrive at the address and paging is started.

« The other 9 queues are empty even though messages have been sent.

In this example we have to wait until the last queue has delivered some of its messages before we depage and the
other queues finally receive some more messages.

23.5. Example

See Section 9.1.34 for an example which shows how to use paging with JBoss Messaging.

7

24

Queue Attributes

Queue attributes can be set in one of two ways. Either by configuring them using the configuration file or by using
the core API. This chapter will explain how to configure each attribute and what effect the attribute has.

24.1. Predefined Queues

Queues can be predefined via configuration at acore level or at a IMS level. Firstly letslook at a IMS level.
The following shows a queue predefined inthej bm j ms. xm configuration file.

<queue nane="sel ect or Queue" >
<entry name="/queue/ sel ect or Queue"/ >
<sel ector string="color="red "/>
<dur abl e>t r ue</ dur abl e>

</ queue>

This name attribute of queue defines the name of the queue. When we do this a a jms level we follow a naming
convention so the actual name of the core queue will bej ms. queue. sel ect or Queue.

The entry element configures the name that will be used to bind the queue to JNDI. This is a mandatory element
and the queue can contain multiple of these to bind the same queue to different names.

The selector element defines what JIM S message selector the predefined queue will have. Only messages that match
the selector will be added to the queue. Thisis an optional element with a default of null when omitted.

The durable element specifies whether the queue will be persisted. This again is optional and defaults to true if
omitted.

Secondly a queue can be predefined at a core level in the j bm confi guration. xni file. The following is an ex-
ample.

<queues>
<queue nane="j ns. queue. sel ect or Queue" >
<addr ess>j ns. queue. sel ect or Queue</ addr ess>
<filter string="color="red "/>
<dur abl e>t r ue</ dur abl e>
</ queue>
</ queues>

Thisisvery similar to the IMS configuration, with 3 real differences which are.

1. Thename attribute of queueisthe actual name used for the queue with no naming convention asin JMS.

2. The address element defines what address is used for routing messages.

78

Queue Attributes

3. Thereisno entry element.

4. Thefilter usesthe Corefilter syntax (described in Chapter 12), not the IM S selector syntax.

24.2. Using the API

Queues can also be created using the core API or the management API.

For the core API, queues can be created via the org. j boss. messagi ng. core. client. dient Sessi on interface.
There are multiple cr eat eQueue methods that support setting all of the previously mentioned attributes. There is
one extra attribute that can be set viathis APl which ist enpor ary. setting this to true means that the queue will be
deleted once the session is disconnected.

Take alook at Chapter 29 for a description of the management API for creating queues.

24.3. Configuring Queues Via Address Settings

There are some attributes that are defined against a queue rather than a specific queue. Here an example of an ad-
dress-set ting entry that would be found in thej bm confi gurati on. xm file.

<addr ess-settings>
<address-setting match="j ns. queue. exanpl eQueue" >
<dead- | ett er-address>j nms. queue. deadlLet t er Queue</ dead- | ett er - addr ess>
<max- del i very- att enpt s>3</ max-del i very-attenpt s>
<redel i very-del ay>5000</r edel i very- del ay>
<expi ry-address>j ns. queue. expi r yQueue</ expi ry- addr ess>
<| ast - val ue- queue>t r ue</ | ast - val ue- queue>
<di stri bution-policy-class>org.]jboss. messagi ng. core. server.inpl.RoundRobi nDi stri butor</distribut
<max- si ze- byt es>100000</ nax- si ze- byt es>
<page- si ze- byt es>20000</ page- si ze- byt es>
<redi stribution-del ay>0</redi stributi on-del ay>
</ addr ess-setti ng>
</ addr ess-settings>

These are explained fully throughout the user manual, howvere here is a breif description with a link to the appro-
priate chapter if available.

max- del i very-at t enpt s defines how many time a cancelled message can be redelivered before sending to the
dead- | et t er - addr ess. A full explanation can be found here.

redel i very- del ay defines how long to wait before attempting redelivery of a cancelled message. see here.
expi ry- addr ess defines where to send a message that has expired. see here.
| ast - val ue- queue defines whether a queue only uses last values or not. see here.

di stribution-policy-class define the class to use for distribution of messages by a queue to consumers. By de-
fault thisisorg. j boss. messagi ng. core. server. i npl . RoundRobi nDi st ri but or.

max- si ze- byt es and page- si ze- byt es are used to set paging on an address. Thisis explained here.

redi stribution-del ay defines how long to wait when the last consumer is closed on a queue before redistributing

79

Queue Attributes

any messages. see here.

80

25

Scheduled Messages

Scheduled messages differ from normal messages in that they won't be delivered until a specified time in the fu-
ture, at the earliest.

To do this, aspecial property is set on the message before sending it.

25.1. Scheduled Delivery Property

The property name used to identify a scheduled message is*_JBM SCHED DELI VERY" (or the constant Messagel m
pl . HDR_SCHEDULED_DELI VERY_TI ME).

The specified value must be al ong corresponding to the time the message must be delivered (in milliseconds). An
example of sending a scheduled message using the IMS API isasfollows.

Text Message nessage =
sessi on. creat eText Message("This is a schedul ed nessage message which will be delivered
inb5 sec.");
nmessage. set LongProperty("_JBM SCHED DELI VERY", SystemcurrentTineMIlis() + 5000);
producer. send(message) ;

/1l message will not be received imedi ately but 5 seconds | ater
Text Message nessageRecei ved = (Text Message) consuner.receive();

Scheduled messages can also be sent using the core API, by setting the same property on the core message before
sending.

25.2. Example

See Section 9.1.40 for an example which shows how scheduled messages can be used with IMS.

81

26

Last-Value Queues

Last-Value queues are specia queues which discard any messages when a newer message with the same value for a
well-defined Last-Value property is put in the queue. In other words, a Last-Vaue queue only retains the last value.

A typical example for Last-Value queue is for stock prices, where you are only interested by the latest value for a
particular stock.

26.1. Configuring Last-Value Queues

L ast-value queues are defined in the address-setting configuration:

<address-setting match="j ms. queue. | ast Val ueQueue" >
<l ast - val ue- queue>t rue</ | ast - val ue- queue>
</ addr ess-setting>

By default, | ast - val ue- queue is false. Address wildcards can be used to configure Last-Vaue queues for a set of
addresses (see Chapter 11).

26.2. Using Last-Value Property

The property name used to identify the last value is "_JBM LVQ NAME' (or the constant Messagel m
pl . HDR_LAST_VALUE_NAME from the Core API).

For example, if two messages with the same value for the Last-Value property are sent to a Last-Vaue queue, only
the latest message will be kept in the queue:

/1 send 1lst message with Last-Value property set to STOCK NAVE
Text Message nmessage =
sessi on. cr eat eText Message(" 1st nessage with Last-Val ue property set");
nmessage. set StringProperty("_JBM LVQ NAME", "STOCK_NAME");
producer. send(message) ;

/1l send 2nd message with Last-Value property set to STOCK NAVE
nessage =
sessi on. cr eat eText Message("2nd nessage with Last-Val ue property set");
message. set Stri ngProperty("_JBM LVQ NAVE', "STOCK NAME');
producer. send(message) ;

/1 only the 2nd nmessage will be received: it is the latest with
/1 the Last-Val ue property set

82

Last-Value Queues

Text Message nessageRecei ved = (Text Message) nessageConsuner . recei ve(5000);
System out . f or mat (" Recei ved nmessage: %\n", nessageReceived. get Text());

26.3. Example

See Section 9.1.22 for an example which shows how last value queues are configured and used with IMS.

83

2/

Message Grouping

Message groups are sets of messages that has the following characteristics:

« Messagesin a message group share the same group id, i.e. they have same group identifier property (JMSXGr ou-
pl Dfor IMS, _JBm GRouP_I D for JBoss Messaging Core API).

* Messages in a message group are always consumed by the same consumer, even if there are many consumers
on aqueue. They pin all messages with the same group id to the same consumer. If that consumer closes anoth-
er consumer is chosen and will receive all messages with the same group id.

27.1. Using Core API

The property name used to identify the message group is "_JBM GROUP_I D' (or the constant Messagel m
pl . HDR_GROUP_I D). Alternatively, you can set aut ogr oup t0 true on the Sessi onFact ory which will pick arandom
uniqueid.

27.2. Using JMS

The property name used to identify the message group is JMSXG oupl D.

Within the same group, messages can also set a IMSXG oupSeq i nt property (starting at 1).

/1l send 2 nessages in the sane group to ensure the sane
/1 consuner will receive both

Message nessage = ...

nmessage. set Stri ngProperty("JMSXG oupl D', "G oup-0");
nmessage. set | nt Property("JMSXG oupSeq”, 1);
producer. send(nessage) ;

nessage = ..
nmessage. set Stri ngProperty("JMSXG oupl D', "G oup-0");
message. set | nt Property("JMSXG oupSeq”, 2);

producer. send(message) ;

Alternatively, you can set aut ogr oup to true on the JBossConnect onFact ory which will pick a random unique id.
Thiscan dso besetinthejbmjms. xn filelikethis:

<connecti on-factory nanme="Connecti onFactory">
<connector-ref connector-nanme="netty-connector"/>
<entries>
<entry nanme="Connecti onFactory"/>

Message Grouping

</entries>
<aut ogr oup>t r ue</ aut ogr oup>
</ connection-factory>

27.3. Example

See Section 9.1.29 for an example which shows how message groups are configured and used with IMS.

85

28

Pre-Acknowledge Mode

JM S specifies 3 acknowledgement modes:

e AUTO ACKNONEDGE
e CLI ENT_ACKNOW.EDGE
e DUPS_OK_ACKNOW.EDGE

The acknowledgement modes al involve sending acknowledgements from the client to the server. However, in the
case where you can afford to lose messages in event of failure, it would make sense to acknowledge the message on
the server before delivering it to the client.

The disadvantage of acknowledging on the server before delivery is that the message will be lost if the system
crashes after acknowledging the message on the server but before it is delivered to the client. In that case, the mes-
sageislost and will not be recovered when the system restart.

Depending on your messaging case, pr e- acknow edgenent mode can avoid extra network traffic and CPU at the
cost of coping with message |oss.

An example of a use case for pre-acknowledgement is for stock price update messages. With these messages it
might be reasonable to lose a message in event of crash, since the next price update message will arrive soon, over-
riding the previous price.

28.1. Using PRE_ACKNOWLEDGE

This can be configured inthej bm j ns. xni fileonthe connection factory likethis:

<connection-factory nane="ConnectionFactory">
<connector-ref connector-name="netty-connector"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<pr e- acknow edge>t r ue</ pr e- acknow edge>
</ connecti on-factory>

Alternatively use pre-acknowledgement mode using the JMS API, create a JIMS Session with the JBossSes-
si on. PRE_ACKNOW.EDGE constant.

/1 messages will be acknowl edge on the server *before* being delivered to the client
Sessi on session = connecti on. creat eSessi on(fal se, JBossSessi on. PRE_ACKNOALEDGE) ;

86

Pre-Acknowledge Mode

Or you can set pre-acknowledge directly on the JBossConnect i onFact ory instance using the setter method.

To use pre-acknowledgement mode using the core APl you can set it directly on the d i ent Sessi onFactory in-
stance using the setter method.

28.2. Example

See Section 9.1.35 for an example which shows how to use pre-acknowledgement mode with with IMS.

87

29

Management

JBoss Messaging has an extensive management APl that allows a user to modify a server configuration, create new
resources (e.g. IMS queues and topics), inspect these resources (e.g. how many messages are currently held in a
queue) and interact with it (e.g. to remove messages from a queue). All the operations allows a client to manage
JBoss Messaging. It also allows clients to subscribe to management notifications.

There are 3 ways to manage JBoss M essaging:

e Using IMX -- IMX isthe standard way to manage Java applications
e Using the core API -- management operations are sent to JBoss Messaging server using core messages
e Using the IMS API -- management operations are sent to JBoss Messaging server using JMS messages

Although there are 3 different ways to manage JBoss Messaging each APl supports the same functionality. If it is
possible to manage aresource using IMX it is aso possible to achieve the same result using Core messages or IMS

Messages.

This choice depends on your requirements, your application settings and your environment to decide which way
suits you best.

29.1. The Management API

Regardless of the way you invoke management operations, the management APl isthe same.
For each managed resource, there exists a Javainterface describing what can be invoked for this type of resource.

JBoss Messaging exposes its managed resourcesin 2 packages:

e Coreresourcesarelocated intheor g. j boss. nessagi ng. cor e. managenent package
e JMSresources arelocated intheor g. j boss. messagi ng. j ms. ser ver . managenent package

The way to invoke a management operations depends whether IM X, core messages, or JIM'S messages are used.

Note

A few management operations requires afilter parameter to chose which messages are involved by the
operation. Passing nul I or an empty string means that the management operation will be performed on all
messages.

88

Management

29.1.1. Core Management API

JBoss Messaging defines a core management API to manage core resources. For full details of the API please con-
sult the javadoc. In summary:

29.1.1.1. Core Server Management

» Creating, deploying and destroying queues

Core queues can be created or destroyed using the management operations cr eat eQueue() Or depl oyQueue()
or dest r oyQueue())on the Messagi ngSer ver Cont r ol (with the ObjectName
org. j boss. messagi ng: modul e=Cor e, t ype=Ser ver Or the resource namecore. server)

cr eat eQueue Will fail if the queue already exists while depl oyQueue will do nothing.
» Listing and closing remote connections

Client's remote addresses can be retrieved using | i st Renot eAddr esses() . It is also possible to close the con-
nections associated with aremote address using the cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDs can belisted using | i st Connecti onl Ds() and all the sessions for a given connec-
tionID can belisted using | i st Sessi ons() .

e Transaction heuristic operations

In case of a server crash, when the server restarts, it it possible that some transaction requires manual interven-
tion. The Ii st Prepar edTransacti ons() method lists the transactions which are in the prepared states (the
transactions are represented as opaque Base64 Strings.) To commit or rollback a given prepared transaction, the
conmi t Prepar edTransacti on() OF rol | backPr epar edTransacti on() method can be used to resolve heuristic
transactions.

< Enabling and resetting Message counters

Message counters can be enabled or disabled using the enabl eMessageCount ers() Or di sabl eMessageCoun-
ters() method. To reset message counters, it is possible to invoke reset Al | MessageCount ers() and re-
set Al | MessageCount er Hi st ori es() methods.

» Retrieving the server configuration and attributes

The Messagi ngSer ver Cont rol exposes JBoss Messaging server configuration through all its attributes (e.g.
get Ver si on() method to retrieve the server's version, etc.)

29.1.1.2. Core Address Management

Core addresses can be managed using the AddressControl class (with the ObjectName
org. j boss. messagi ng: modul e=Cor e, t ype=Addr ess, nane="<the address nane>" oOr the resource name
core. addr ess. <t he address name>).

* Modifying roles and permissions for an address

89

Management

You can add or remove roles associated to a queue using the addRol e() Of. renoveRol e() methods. You can
list al the roles associated to the queue with the get Rol es() method

29.1.1.3. Core Queue Management

The bulk of the core management API deals with core queues. The QueueControl class defines the Core queue
management operations (with the ObjectName or g. j boss. nessagi ng: nodul e=Cor e, t ype=Queue, addr ess="<t he
bound address>", name="<t he queue nane>" Of the resource name cor e. queue. <t he queue narre>).

Most of the management operations on queues take either a single message ID (e.g. to remove a single message) or
afilter (e.g. to expire al messages with a given property.)

Expiring, sending to a dead |etter address and moving messages

Messages can be expired from a queue by using the expi r eMessages() method. If an expiry addressis defined,
messages will be be sent to it, otherwise they are discarded. The queue's expiry address can be set with the set -
Expi ryAddr ess() method.

Messages can aso be sent to a dead letter address with the sendMessagesToDeadLet t er Address() method. It
returns the number of messages which are sent to the dead letter address. If a dead letter address is not defined,
message are removed from the queue and discarded. The queue's dead letter address can be set with the set -
DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the moveMessages() method.
Listing and removing messages

Messages can be listed from a queue by using the | i st Messages() method which returns an array of Map, one
Map for each message.

Messages can also be removed from the queue by using the renoveMessages() method which returns a
bool ean for the single message ID variant or the number of removed messages for the filter variant.

Counting messages

The number of messages in a queue is returned by the get MessageCount () method. Alternatively, the count -
Messages() Will return the number of messages in the queue which match a given filter

Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns a
bool ean for the single message ID variant or the number of updated messages for the filter variant.

M essage counters

Message counters can be listed for a queue with the 1i st MessageCount er () and |i st MessageCount er Hi s-
tory() methods (see Section 29.7). The message counters can also be reset for a single queue using ther eset -
MessageCount er () method.

Retrieving the queue attributes

90

Management

The QueueCont rol exposes Core gqueue settings through its attributes (e.g. get Fi I ter () to retrieve the queue's
filter if it was created with one, i sbur abl e() to know wether the queue is durable or not, etc.)

29.1.1.4. Other Core Resources Management

JBoss Messaging allows to start and stop its remote resources (acceptors, diverts, bridges, etc.) so that a server can
be taken off line for a given period of time without stopping it completely (e.g. if other management operations
must be performed such as resolving heuristic transactions). These resources are:

* Acceptors

They can be started or stopped using the start () or. st op() method on the Accept or Cont rol class (with the
ObjectName org. j boss. messagi ng: modul e=Cor e, t ype=Accept or , name="<t he acceptor nane>" Or the re-
source name cor e. accept or. <t he address name>). The acceptors parameters can be retrieved using the Ac-
cept or Cont rol attributes (see Section 14.1)

* Diverts

They can be started or stopped using the st art () or st op() method on the Di vert Control class (with the Ob-
jectName or g. j boss. messagi ng: modul e=Cor e, t ype=Di vert, nane=<t he divert name> or the resource name
core.divert.<the divert name>). Diverts parameters can be retrieved using the Di vert Control attributes
(see Chapter 33)

* Bridges

They can be started or stopped using the start () (resp. st op()) method on the Bri dgeCont rol class (with the
ObjectName or g. j boss. nessagi ng: modul e=Cor e, t ype=Bri dge, name="<t he bridge nane>" oOr the resource
name core. bri dge. <the bri dge name>). Bridges parameters can be retrieved using the Bri dgeCont r ol attrib-
utes (see Chapter 34)

* Broadcast groups

They can be started or stopped using thestart () or st op() method on the Br oadcast GroupCont rol class (with
the ObjectName org.j boss. messagi ng: nodul e=Cor e, t ype=Br oadcast &G oup, nane="<t he broadcast group
name>" Or the resource name cor e. br oadcast gr oup. <t he broadcast group name>). Broadcast groups para-
meters can be retrieved using the Br oadcast GroupCont r ol attributes (see Section 36.2.1)

» Discovery groups

They can be started or stopped using thestart () or st op() method on the Di scover yG oupCont rol class (with
the ObjectName org. j boss. nessagi ng: modul e=Cor e, t ype=Di scover yG oup, nhane="<t he di scovery group
name>" Or the resource name cor e. di scovery. <the discovery group name>). Discovery groups parameters
can be retrieved using the Di scover yGroupCont rol attributes (see Section 36.2.2)

¢ Cluster connections

They can be started or stopped using the start () or stop() method on the A ust er Connecti onControl class
(with the ObjectName or g. j boss. nessagi ng: nodul e=Cor e, t ype=d ust er Connect i on, name="<t he cl uster
connection nane>" Of the resource name core. cl usterconnection. <the cluster connection nane>).

91

Management

Cluster connections parameters can be retrieved using the d ust er Connecti onControl attributes (see Sec-
tion 36.3.1)

29.1.2. JMS Management API

JBoss Messaging defines a IMS Management APl to manage JM S administrated objects (i.e. IMS queues, topics
and connection factories).

29.1.2.1. JMS Server Management

JMS Resources (connection factories and destinations) can be created using the JMsSer ver Cont r ol class (with the
ObjectName or g. j boss. messagi ng: nodul e=JMS, t ype=Ser ver Or the resource namej ns. server).

Creating/destroying connection factories

JMSS connection factories can be created or destroyed using the cr eat eConnect i onFact ory() methods or des-

t royConnecti onFact ory() methods. These connection factories are bound to JNDI so that IMS clients can
look them up. If a graphical console is used to create the connection factories, the transport parameters are spe-
cified in the text fied input as a comma-separated list of key=vaue (e.g. keyl1=10, key2="val ue",

key3=f al se). If there are multiple transports defined, you need to enclose the key/value pairs between curly
braces. For example { key=10}, {key=20}.In that case, thefirst key will be associated to the first transport con-
figuration and the second key will be associated to the second transport configuration (see Chapter 14 for alist
of the transport parameters)

Creating/destroying queues

JM'S queues can be created or destroyed using the cr eat eQueue() methods or dest r oyQueue() methods. These
queues are bound to JNDI so that IM S clients can look them up

Creating/destroying topics

JM S topics can be created or destroyed using the cr eat eTopi c() Or dest r oyTopi ¢() methods. These topics are
bound to INDI so that IMS clients can look them up

Listing and closing remote connections

JMS Clients remote addresses can be retrieved using | i st Rerot eAddr esses() . It is also possible to close the
connections associated with aremote address using the cl oseConnect i onsFor Addr ess() method.

Alternatively, connection IDs can belisted using | i st Connect i onl Ds() and all the sessions for a given connec-
tion ID can belisted using 1 i st Sessi ons() .

29.1.2.2. JMS ConnectionFactory Management

JMS Connection Factories can be managed using the Connect i onFactoryControl class (with the ObjectName
org. j boss. messagi ng: modul e=JMS, t ype=Connect i onFact ory, name="<t he connection factory name>" or the
resource namej nms. connecti onfactory. <the connection factory name>).

Retrieving connection factory attributes

92

Management

The Connecti onFact oryControl exposes JMS ConnectionFactory configuration through its attributes (e.g.
get Consumer W ndowSi ze() to retrieve the consumer window size for flow control, i sBl ockOnNonPer si st ent -
Send() to know wether the producers created from the connection factory will block or not when sending non-
persistent messages, etc.)

29.1.2.3. IMS Queue Management

JMS queues can be managed using the JMsQueueControl class (with the ObjectName
org. j boss. nessagi ng: nodul e=JMS, t ype=Queue, nane="<t he queue nanme>" or the resource name
j ms. queue. <t he queue narre>).

The management operations on a JIMS queue are very similar to the operations on a core queue.

» Expiring, sending to adead |etter address and moving messages

Messages can be expired from a queue by using the expi reMessages() method. If an expiry addressis defined,
messages will be be sent to it, otherwise they are discarded. The queue's expiry address can be set with the set -
Expi r yAddr ess() method.

Messages can aso be sent to a dead letter address with the sendMessagesToDeadLet t er Address() method. It
returns the number of messages which are sent to the dead |etter address. If a dead letter address is not defined,
message are removed from the queue and discarded. The queue's dead letter address can be set with the set -
DeadLet t er Addr ess() method.

Messages can also be moved from a queue to another queue by using the noveMessages() method.
e Listing and removing messages

Messages can be listed from a queue by using the | i st Messages() method which returns an array of Map, one
Map for each message.

Messages can aso be removed from the queue by using the renoveMessages() method which returns a
bool ean for the single message ID variant or the number of removed messages for the filter variant.

e Counting messages

The number of messages in a queue is returned by the get MessageCount () method. Alternatively, the count -
Messages() will return the number of messages in the queue which match a given filter

» Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns a
bool ean for the single message ID variant or the number of updated messages for the filter variant.

e Message counters

Message counters can be listed for a queue with the i st MessageCount er () and |i st MessageCount er Hi s-
tory() methods (see Section 29.7)

* Retrieving the queue attributes

93

Management

The JMsQueueCont rol exposes JM S queue settings through its attributes (e.g. i sTenporary() to know wether
the queue istemporary or not, i sbur abl e() to know wether the queue is durable or not, etc.)

29.1.2.4. JMS Topic Management

JMS Topics can be managed wusing the TopicControl class (with the ObjectName
org. j boss. nessagi ng: nodul e=JMS, t ype=Topi c, nanme="<t he topic nanme>" or the resource name
j ms. topic. <the topic name>).

» Listing subscriptions and messages

JMS topics subscriptions can be listed using the 1i st All Subscriptions(), |istDurabl eSubscriptions(),
l'i st NonDur abl eSubscri ptions() methods. These methods return arrays of j ect representing the subscrip-
tions information (subscription name, client ID, durability, message count, etc.). It is also possible to list the
JMS messages for a given subscription with thel i st MessagesFor Subscri pti on() method.

» Dropping subscriptions
Durable subscriptions can be dropped from the topic using the dr opbur abl eSubscri pti on() method.
e Counting subscriptions messages

The count MessagesFor Subscri pti on() method can be used to know the number of messages held for a given
subscription (with an optional message selector to know the number of messages matching the selector)

29.2. Using Management Via JMX

JBoss Messaging can be managed using JMX
[http://java.sun.com/javase/technol ogies/core/mntr-mgmt/javamanagement/] .

The management API is exposed by JBoss Messaging using MBeans interfaces. JBoss Messaging registers its re-
sources with the domain or g. j boss. messagi ng.

For example, the vj ect Narme to manage a IMS Queue exanpl eQueue iS:
org. j boss. nessagi ng: nodul e=JMS, t ype=Queue, nanme="exanpl eQueue"
and the MBean is:

org.j boss. nessagi ng. j ms. server. nanagenent . JMsQueueCont r ol

The MBean's j ect Nane are built using the helper class or g. j boss. nessagi ng. cor e. managenent . Obj ect Nanes.
You can also usej consol e to find the j ect Nane of the MBeans you want to manage.

Managing JBoss Messaging using JMX is identical to management of any Java Applications using JIMX. It can be

94

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Management

done by reflection or by creating proxies of the MBeans.

29.2.1. Configuring JMX

By default, IMX is enabled to manage JBoss Messaging. It can be disabled by setting j mx- managenent - enabl ed to

fal seinjbmconfiguration. xm :

<I-- false to disable JMX nanagenent for JBoss Messaging -->
<j mx- managenent - enabl ed>f al se</j nx- managenent - enabl ed>

If IMX is enabled, JBoss Messaging can be managed locally using j consol e. Remote connections to IMX are not
enabled by default for security reasons. Please refer to Java Management guide
[http://java.sun.com/j2se/1.5.0/docs/gui de/management/agent.html#remote] to configure the server for remote man-
agement (system properties must be set inrun. sh Of run. bat Scripts).

29.2.1.1. MBeanServer configuration

When JBoss Messaging is run in standalone, it uses the Java Virtual Machine's Pl at f or m MBeanSer ver tO register
its MBeans. Thisis configured in JBoss Microcontainer Beans file (see Section 4.7):

<l-- MBeanServer -->
<bean nane="MBeanServer" cl ass="j avax. managenent. MBeanSer ver" >
<constructor factoryC ass="java. | ang. mnanagenent . Managenent Fact ory"
fact oryMet hod="get Pl at f or riVBeanServer" />
</ bean>

When it isintegrated in JBoss AS 5, it uses the Application Server's own MBean Server so that it can be managed
using AS 5'sjmx-console;

<l-- MBeanServer -->
<bean nane="MBeanServer" class="j avax. managenent. MBeanServer">
<constructor factoryC ass="org.jboss.nx.util.MeanServerLocator"
factoryMet hod="I| ocat eJBoss" />
</ bean>

29.2.2. Example

See Section 9.1.20 for an example which shows how to use a remote connection to JMX and MBean proxies to
manage JBoss M essaging.

29.3. Using Management Via Core API

The core management API in JBoss Messaging is called by sending Core messages to a special address, the man-
agement address.

Management messages are regular Core messages with well-known properties that the server needs to understand

95

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html#remote

Management

to interact with the management API:

* The name of the managed resource
¢ The name of the management operation
e The parameters of the management operation

When such a management message is sent to the management address, JBoss Messaging server will handle it, ex-
tract the information, invoke the operation on the managed resources and send a management reply to the manage-
ment message's reply-to address (specified by d i ent Messagel npl . REPLYTO _HEADER_NAME).

A dient Consumer can be used to consume the management reply and retrieve the result of the operation (if any)
stored in the reply's body. For portability, results are returned as a JSON [http://json.org] String rather than Java
Serialization (the or g. j boss. messagi ng. core. cl i ent. managenent . i npl . Managenent Hel per can be used to con-
vert the JSON string to Java objects).

These steps can be ssimplified to make it easier to invoke management operations using Core messages:

1. Createadient Request or t0 Send messages to the management address and receive replies
2. Createad i ent Message

3. Use the helper class org.j boss. messagi ng. core. cl i ent. managenment . i npl . Management Hel per to fill the
message with the management properties

4. Send the message using the C i ent Request or

5. Use the helper class org.j boss. messagi ng. core. cl i ent. managenent . i npl . Managenent Hel per t0 retrieve
the operation result from the management reply

For example, to find out the number of messages in the core queue exanpl eQueue:

Cient Session session = ...

Cli ent Request or requestor = new d i ent Requestor(session, "jbm managenent");
C i ent Message nmessage = session. created ient Message(fal se);
Managenent Hel per. put Attri but e(nessage, "core. queue. exanpl eQueue", "messageCount");

C i ent Message reply = requestor.request(n);
int count = (Integer) Managenent Hel per. get Resul t(reply);
Systemout.println("There are " + count + " nessages in exanpl eQueue");

Management operation name and parameters must conform to the Java interfaces defined in the managenent pack-
ages.

Names of the resources are built using the helper class or g. j boss. messagi ng. cor e. managenent . Resour ceNarnes
and are straightforward (cor e. queue. exanpl eQueue for the Core Queue exanpl eQueue, j ms. t opi ¢. exanpl eTopi ¢
for the IMS Topic exanpl eTopi ¢, €tC.).

29.3.1. Configuring Core Management

96

http://json.org

Management

The management address to send management messages is configured inj bm confi gurati on. xm :

<managenent - addr ess>j bm nmanagenent </ managenent - addr ess>

By default, the addressisj bm managenent .
The management address requires a special user permission manage to be able to receive and handle management

messages. Thisis also configured in jbm-configuration.xml:

<l-- users with the admin role will be allowed to nanage -->
<I'-- JBoss Messagi ng usi ng managenent nessages -->
<security-setting match="j bm nanagenent">

<perm ssi on type="nanage" rol es="adm n" />
</security-setting>

29.4. Using Management Via JMS

Using JM S messages to manage JBoss Messaging is very similar to using core API.

An important difference is that IMS requires a IMS queue to send the messages to (instead of an address for the
core API).

The management queue is a special queue and needs to be instantiated directly by the client:

Queue managenent Queue = new JBossQueue("j bm nanagenent”, "jbm managenent");

All the other steps are the same than for the Core API but they use IMS API instead:

1. create aQueueRequest or t0 send messages to the management address and receive replies
2. create aMessage

3. use the helper class or g. j boss. nessagi ng. j ns. server . management . i mpl . JMSManagenent Hel per to fill the
message with the management properties

4. send the message using the QueueRequest or

5. usethe helper class or g. j boss. nessagi ng. j ms. ser ver. managenent . i npl . JMBManagenent Hel per tO retrieve
the operation result from the management reply

For example, to know the number of messages in the IMS queue exanpl eQueue:

Queue managenent Queue = new JBossQueue("j bm managenent", "jbm managenent");

QueueSessi on session = ...
QueueRequest or requestor = new QueueRequest or (sessi on, managenent Queue) ;

97

Management

connection.start();

Message message = session. creat eMessage();

JMBManagenent Hel per. put Attri but e(message, "j ns. queue. exanpl eQueue”, "managenent QueueessageCount");
Message reply = requestor.request (nmessage);

int count = (Integer)JNVMSManagenent Hel per. getResult (reply);

Systemout.println("There are " + count + " nessages in exanpl eQueue");

29.4.1. Configuring JMS Management

Whether IM S or the core API is used for management, the configuration steps are the same (see Section 29.3.1).

29.4.2. Example

See Section 9.1.24 for an example which shows how to use JM S messages to manage JBoss Messaging server.

29.5. Management Cluster Credentials

JBoss Messaging allows replication of alive server to a backup server. Thisimpacts management as resources cre-
ated on the live server (e.g. a core address) must also be created on the backup server. Otherwise, when failover oc-
curs, the backup server will not be able to handle messages sent to this address since its resources will have been
created on the live server only and not on the backup.

JBoss Messaging replicates management operations regardless of the management API used (JMX, Core mes-
sages, JIMS messages). Any management operation invoked on a live server will aso be invoked on its backup
server to ensure a proper replication of resources and state. For example, you only need to manage the live server:
if aqueueis created on the live server, JBoss Messaging will ensure that the same resource will also be created on
the backup server.

If core or IMS messages are used to invoke management operations, replication is handled automatically by JBoss
Messaging.

To alow this management replication with IMX, JBoss Messaging defines management cluster credentials: this
specia user/password must be shared by all nodes. To configure it, change the valueinj bm confi gurati on. xm :

<managenent - cl ust er - user >JBM MANAGEMENT. ADM N. USER</ managenent - cl ust er - user >
<managemnent - cl ust er - passwor d>CHANGE ME! ! </ managenent - cl ust er - passwor d>

It is strongly suggested to change these values from their default. If they are not changed from the default, JBoss
Messaging will detect this and pester you with awarning on every start-up.

JBoss Messaging internally uses Core messages to replicate management operations between the live and backup
server when IMX is used. By default, there is atimeout of 5s (5000ms) to send a management request from the live
server to the backup server and wait for areply. If areply is not received before the timeout is hit, JBoss Messaging
considers the replication has failed. Thistimeout can be configured inj bm confi gurati on. xni :

<managenent - r equest - t i meout >5000</ managenent - r equest - t i meout >

98

Management

29.6. Management Notifications

JBoss Messaging emits natifications to inform listeners of potentially interesting events (creation of new resources,
security violation, etc.).

These notifications can be received by 3 different ways:

e JMX notifications
¢ Core messages

¢ JMS messages

29.6.1. JMX Notifications

If IMX isenabled (see Section 29.2.1), IM X notifications can be received by subscribing to 2 MBeans:

* org.jboss. nessagi ng: nodul e=Cor e, t ype=Ser ver for notifications on Core resources

* org.jboss. nessagi ng: nodul e=JVS, t ype=Ser ver for notifications on IMS resources

29.6.2. Core Messages Notifications

JBoss Messaging defines a special management notification address. Core queues can be bound to this address so
that clients will receive management notifications as Core messages

A Core client which wants to receive management notifications must create a core queue bound to the management
notification address. It can then receive the notifications from its queue.

Notifications messages are regular core messages with additional properties corresponding to the notification (its
type, when it occurred, the resources which were concerned, etc.).

Since natifications are regular core messages, it is possible to use message selectors to filter out notifications and
receives only a subset of al the notifications emitted by the server.

29.6.2.1. Configuring The Core Management Notification Address

the management notification address to receive management notifications is configured in
j bm configuration. xm:

<managenent - noti fi cati on- address>j bm noti fi cati ons</ nanagenent - noti fi cati on- addr ess>

By default, the addressisj bm noti fi cati ons.

99

Management

29.6.3. JMS Messages Notifications

JBoss Messaging's notifications can also be received using JM S messages.
It is similar to receiving notifications using Core API but an important difference is that IMS requires a IMS Des-

tination to receive the messages (preferably a Topic):

Topi ¢ notificationsTopic = new JBossTopic("jbmnotifications", "jbmnotifications");

Once the notification topic is created, you can receive messages from it or set a Messageli st ener :

Topi c notificationsTopic = new JBossTopic("jbmnotifications", "jbmnotifications");

Sessi on session = ...
MessageConsurer notificati onConsunmer = session. creat eConsuner (notificationsTopic);
notificati onConsuner. set MessagelLi st ener (new MessagelLi st ener ()

{
public void onMessage(Message noti f)
{
Systemout.printIn("------------------------ ")
System out . println("Received notification:");
try
{
Enunerati on propertyNames = notif. getPropertyNanmes();
whi | e (propertyNanes. hasMor eEl enent s())
String propertyNane = (String)propertyNanes. next El enent () ;
Systemout.format (" %: %\n", propertyName, notif.get ObjectProperty(propertyNane));
}
}
catch (JMsException e)
{
}
Systemout.printin("------------------------ ")
}

1)

29.6.4. Example

See Section 9.1.25 for an example which shows how to use a IMS MessagelLi st ener t0 receive management noti-
fications from JBoss Messaging server.

29.7. Message Counters

Message counters can be used to obtain information on queues over time as JBoss Messaging keeps a history on
queue metrics.

They can be used to show trends on queues. For example, using the management AP, it would be possible to query
the number of messages in a queue at regular interval. However, this would not be enough to know if the queue is
used: the number of messages can remain constant because nobody is sending or receiving messages from the
queue or because there are as many messages sent to the queue than messages consumed from it. The number of

100

Management

messages in the queue remains the same in both cases but its use iswiddly different.

Message counters gives additional information about the queues:

hd count
Thetotal number of messages added to the queue since the server was started
e countDelta
the number of messages added to the queue since the last message counter update
e depth
The current number of messages in the queue
e depthDelta

The overall number of messages added/removed from the queue since the last message counter update. For ex-
ample, if dept hDel ta is equal to - 10 this means that overall 10 messages have been removed from the queue
(e.9. 2 messages were added and 12 were removed)

* | ast AddTi mest anp
The timestamp of the last time a message was added to the queue
* udpat eTi nest anp

The timestamp of the last message counter update

29.7.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory (the metrics are kept
in memory) and CPU (the queues are sampled at regular interval).

To enable message counters, you can setittotrue inj bm confi gurati on. xn :

<message- count er - enabl ed>t r ue</ message- count er - enabl ed>

Message counters keeps a history of the queue metrics (10 days by default) and samples al the queues at regular
interval (10 seconds by default). If message counters are enabled, these values should be configured to suit your
messaging use caseinj bm confi gurati on. xni :

<I-- keep history for a week -->
<nmessage- count er - max- day- hi st or y>7</ nessage- count er - max- day- hi st ory>
<l-- sanple the queues every mnute (60000ns) -->

<nessage- count er - sanpl e- peri od>60000</ message- count er - sanpl e- peri od>

Message counters can be retrieved using the Management API. For example, to retrieve message counters on a

101

Management

JMS Queue using IMX:

/1 retrieve a connection to JBoss Messagi ng's MBeanServer
MBeanSer ver Connecti on nbsc = ...

JMBQueueCont r ol MBean queueControl = (JMSQueueControl) MBeanServer | nvocati onHandl er. newPr oxyl nst ance(nmbsc,

on,

JMSQueueControl . cl ass,

fal se);
/1l message counters are retrieved as a JSON String
String counters = queueControl.listMessageCounter();

/1 use the MessageCounterlnfo hel per class to nani pul ate nessage counters nore easily
MessageCount er I nf o messageCount er = MessageCount er | nf o. f romJSON(count ers) ;
Systemout.format ("% nessage(s) in the queue (since |last sanple: %)\n",

count er. get Dept h(),

counter.getDepthDelta());

29.7.2. Example

See Section 9.1.27 for an example which shows how to use message counters to retrieve information on a IMS
Queue.

102

30

Security

This chapter describes how security works with JBoss Messaging and how you can configure it. To disable security
completely smply set thesecuri t y- enabl ed property to falseinthej bm confi guration. xm file.

For performance reasons security is cached and invalidated every so long. To change this period set the property
security-invalidation-interval,whichisin milliseconds. The default is 10000 ms.

30.1. Role based security for addresses

JBoss Messaging contains a flexible role-based security model for applying security to queues, based on their ad-
dresses.

As explained in Chapter 6, JBoss Messaging core consists mainly of sets of queues bound to addresses. A message
is sent to an address and the server looks up the set of queues that are bound to that address, the server then routes
the message to those set of queues.

JBoss Messaging allows sets of permissions to be defined against the queues based on their address. An exact
match on the address can be used or awildcard match can be used using the wildcard characters '#' and " '.

Seven different permissions can be given to the set of queues which match the address. Those permissions are:

* creat eDurabl eQueue. This permission allows the user to create a durable queue under matching addresses.
e del et eDur abl eQueue. Thispermission allows the user to delete a durable queue under matching addresses.
e createTenpQueue. This permission allows the user to create atemporary queue under matching addresses.

e del et eTenpQueue. This permission alows the user to delete atemporarry queue under matching addresses.
e send. This permission allows the user to send a message to matching addresses.

* consure. Thispermission allows the user to consume a message from a queue bound to matching addresses.

¢ manage. Thispermission allows the user to invoke management operations by sending management messagesto
the management address.

For each permission, a list of roles who are granted that permission is specified. If the user has any of those roles,
he/she will be granted that permission for that set of addresses.

Let'stake asimple example, here's a security block from j bm confi gurati on. xm or j bm queues. xni file:

<security-setting nmatch="gl obal queues. eur ope. #" >

103

Security

<perm ssi on type="creat eDur abl eQueue" rol es="adni n"/>

<per m ssi on type="del et eDur abl eQueue" rol es="adm n"/>

<perm ssi on type="creat eTenpQueue" rol es="adm n, guest, europe-users"/>

<per m ssion type="del et eTenpQueue" rol es="adni n, guest, europe-users"/>

<perm ssi on type="send" rol es="adni n, europe-users"/>

<perm ssi on type="consume" rol es="admi n, europe-users"/>
</security-setting>

The '#' character signifies "any sequence of words'. Words are delimited by the '. ' character. For a full description
of the wildcard syntax please see Chapter 11. The above security block applies to any address that starts with the
string "global queues.europe.”:

Only users who have the adni n role can create or delete durable queues bound to an address that starts with the
string "global queues.europe.”

Only users who have the adni n role can create or delete durable queues bound to an address that starts with the
string "global queues.europe.”

Any users with the roles admi n, guest , Or eur ope- user s can create or delete temporary queues bound to an address
that starts with the string " global queues.europe.”

Any users with the roles adni n or eur ope- users can send messages to these addresses or consume messages from
gueues bound to an address that starts with the string "global queues.europe.”

The mapping between a user and what roles they have is handled by the security manager. JBoss Messaging ships
with a user manager that reads user credentials from afile on disk, and can also plug into JAAS or JBoss Applica
tion Server security.

For more information on configuring the security manager, please see Section 30.4.

There can be zero or more securi ty-setting elementsin each xml file. Where more than one match appliesto a
set of addresses the more specific match takes precedence.

Let'slook at an example of that, here's another security-setti ng block:

<security-setting nmatch="gl obal queues. eur ope. orders. #">
<per m ssion type="send" rol es="europe-users"/>
<perm ssi on type="consunme" rol es="europe-users"/>
</security-setting>

Inthissecurity-setting block the match 'global queues.europe.orders.# is more specific than the previous match
'global queues.europe.#. So any addresses which match 'global queues.europe.orders.# will take their security set-
tings only from the latter security-setting block.

Note that settings are not inherited from the former block. All the settings will be taken from the more specific
matching block, so for the address 'global queues.europe.orders.plastics' the only permissions that exist are send and
consure for the role europe-users. The permissions creat eDurabl eQueue, del et eDur abl eQueue,
cr eat eTenpQueue, del et eTenpQueue are not inherited from the other security-setting block.

By not inheriting permissions, it allows you to effectively deny permissions in more specific security-setting blocks
by simply not specifying them. Otherwise it would not be possible to deny permissions in sub-groups of addresses.

104

Security

30.2. Secure Sockets Layer (SSL) Transport

When messaging clients are connected to servers, or servers are connected to other servers (e.g. via bridges) over
an untrusted network then JBoss Messaging allows that traffic to be encrypted using the Secure Sockets Layer
(SSL) transport.

For more information on configuring the SSL transport, please see Chapter 14.

30.3. Basic user credentials

JBoss Messaging ships with a security manager implementation that reads user credentials, i.e. user names, pass-
words and role information from an xml file on the classpath called j bm users. xni . This is the default security
manager.

If you wish to use this security manager, then users, passwords and roles can easily be added into thisfile.

Let'stake alook at an examplefile:

<configuration xm ns="urn:jboss: nessagi ng"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="urn:j boss: nessagi ng ../schenmas/jbm users. xsd ">

<def aul tuser nane="guest" password="guest">
<rol e name="guest"/>
</ def aul t user >

<user nane="tim' password="marnite">
<rol e name="admi n"/>
</ user>

<user nane="andy" passwor d="doner _kebab">
<rol e name="admi n"/>
<rol e nane="guest"/>

</ user>

<user nane="jeff" password="canenbert">
<rol e nane="eur ope-users"/>
<rol e name="guest"/>

</ user>

</ confi guration>

The first thing to note is the element def aul t - user . This defines what user will be assumed when the client does
not specify a username/password when creating a session. In this case they will be the user guest and have the role
also called guest . Multiple roles can be specified for a default user.

We then have three more users, the user t i mhas the role adni n. The user andy has the roles adni n and guest , and
theuser j ef f hastheroleseur ope- users and guest .

30.4. Changing the security manager

105

Security

If you do not want to use the default security manager then you can specify a different one by editing the j bm
j boss-beans. xni file and changing the class for the JBMsecuri t yManager bean.

Let'stake alook at a snippet from the default beansfile:

<bean name="JBMSecurityManager"
cl ass="org. j boss. nessagi ng. core. security.inpl.JBMsecurityMnager| npl ">
<start ignored="true"/>
<stop ignored="true"/>
</ bean>

The class or g. j boss. nessagi ng. core. security.inpl.JBMSecurityManager | npl is the default security manager
that reads used by the standalone server.

JBoss Messaging ships with two other security manager implementations you can use off-the-shelf; one a JAAS se-
curity manager and another for integrating with JBoss Application Sever security, aternatively you could write
your own implementation by implementing the or g. j boss. messagi ng. core. security. Securi t yManager inter-
face, and specifying the classname of your implementation inthej bm j boss- beans. xni file.

These two implementations are discussed in the next two sections.

30.5. JAAS Security Manager

JAAS stands for 'Java Authentication and Authorization Service' and is a standard part of the Java platform. It
provides a common API for security authentication and authorization, allowing you to plugin your pre-built imple-
mentations.

To configure the JAAS security manager to work with your pre-built JAAS infrastructure you need to specify the
security manager as a JAASSecur i t yManager inthe beansfile. Here's an example:

<bean name="JBMSecurityManager"
cl ass="org.j boss. messagi ng. i ntegration. security.JAASSecurityManager">
<start ignored="true"/>
<stop ignored="true"/>

<property nane="Confi gurationNanme">org.j boss.jnms. exanpl e. Exanpl eLogi nModul e</ property>
<property nane="Confi guration">
<i nj ect bean="Exanpl eConfiguration"/>
</ property>
<property nane="Cal | backHandl er ">
<i nj ect bean="Exanpl eCal | backHandl er"/ >
</ property>
</ bean>

Note that you need to feed the JAAS security manager with three properties:

» ConfigurationName: the name of the Logi nMbdul e implementation that JAAS must use

e Configuration: the Confi gur at i on implementation used by JAAS

106

Security

e CadlbackHandler: the cal | backHandl er implementation to use if user interaction are required

30.5.1. Example

See Section 9.1.19 for an example which shows how JBoss Messaging can be configured to use JAAS.

30.6. JBoss AS Security Manager

The JBoss AS security manager is used when running JBoss Messaging inside the JBoss Application server. This
allows tight integration with the JBoss Application Server's security model.

The class name of this security manager is
org. j boss. nessagi ng.i ntegration.security.JBossASSecurityManager

Take alook at one of the default j bm j boss- beans. xnl files for JBoss Application Server that are bundled in the
distribution for an example of how thisis configured.

30.7. Changing the Management Password for Clustering

In order for cluster connections to work correctly, each node in the cluster must register for management notifica-
tions from other nodes. To do this they must perform these actions as a user with arole that has adni n permissions
on the management addresses.

This password should always be changed from its default after installation. Please see Chapter 29 for instructions
on how to do this.

107

31

Application Server Integration and Java EE

JBoss Messaging can be easily installed in JBoss Application Server 5.1 or JBoss Enterprise Application Platform
5.1 or later. For details on installing JBoss Messaging in the JBoss Application Server refer to quick-start guide.

JBoss Messaging can also be integrated with any other JEE compliant application server by using the JBoss Mes-
saging JCA adapter. A JCA Adapter basically controls the incoming of messages to Message Driven Beans and the
outgoing of messages from other J2EE components.

This section explains the basics behind configuring the different JEE componentsin the AS.

31.1. Configuring Message Driven Beans

The delivery of messages to an MDB using JBoss Messaging is configured on the JCA Adapter via a configuration
filera. xmi which can be found under in the j ns-ra. rar archive of directory. By default thisis configured to con-
sume messages using an InVM connector from the instance of JBoss Messaging running within the application
server. A full list of what is configurable isfound later in this chapter.

All MDB's however need to have the destination type and the destination configured. The following example
shows how this can be done via annotations.

@kessageDri ven(nane = " MDBExanpl e",
activationConfig =
{
@Act i vati onConfi gProperty(propertyNane
@A\ct i vati onConfi gProperty(propertyNane

})
public class NMDBExanpl e inpl ements Messageli st ener

{

public void onMessage(Message nessage). ..

}

In this example you can see that the MDB will consume messages from a queue that is mapped into INDI with the
binding queue/ t est Queue. This queue must be preconfigured in the usual way using the JBoss Messaging config-
uration files.

31.1.1. Using Container Managed Transactions

When an MDB is using Container Managed Transactions, the delivery of the message is done within the scope of
an XA transaction. The commit or rollback of this transaction is controlled by the container itself. If the transaction
is rolled back then the JBoss Message delivery semantics will kick in (by default this is to try and redeliver the
message up to 10 times before sending to a DL Q). Using annotations this would be configured as follows:

@kssageDri ven(nanme = "NMDB_CMP_TxRequi r edExanpl e",

108

"destinati onType", propertyVal ue
"destination", propertyValue = "queue/te

"jave

Application Server Integration and Java EE

activationConfig =
{
@Act i vati onConfi gProperty(propertyNane = "destinati onType", propertyValue = "jave
@\ct i vationConfigProperty(propertyNane = "destination", propertyValue = "queue/te
})
@r ansact i onManagenent (val ue= Transact i onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
public class MDB_CMP_TxRequiredExanpl e i npl enents Messageli st ener

{
}

public void onMessage(Message nessage). ..

The Transact i onManagenent annotation tells the container to treat this MDB to use Container Managed Persist-
ence. The Transacti onAttri but e annotation tells the container that an XA transaction is required for this MDB.
Note that the only other valid value for thisis Transact i onAt t ri but eType. NOT_SUPPORTED Which tells the contain-
er that this MDB does not support XA transactions and one should not be created.

It is also possible to inform the container that it must rollback the transaction by calling set Rol | backonl y on the
MessageDr i venCont ext . The code for this would look something like:

@Resour ce
MessageDri venCont ext ct x;

public void onMessage(Message nessage)

{
try
{
/I sonething here fails
catch (Exception e)
{
ctx. set Rol | backOnl y();
}
}

If you don't want the over head of an xa transaction being created every time but you would still like the message
delivered within a transaction (i.e. you are only using a JMS resource) then you can configure the MDB to use a
local transaction. This would be configured as such:

@kssageDri ven(nane = "NMDB_CWMP_TxLocal Exanpl e",
activationConfig =

{
@Act i vati onConfi gProperty(propertyNane = "destinationType", propertyValue = "]j
@\ct i vati onConfi gProperty(propertyNane = "destination", propertyValue = "queue
@Act i vati onConfi gProperty(propertyName = "uselLocal Tx", propertyValue = "true")
})

@ransact i onManagenent (val ue = Transacti onManagenent Type. CONTAI NER)
@r ansacti onAttri bute(val ue = Transacti onAttri but eType. NOT_SUPPORTED)
public class MDB_CMP_TxLocal Exanpl e i npl enents Messageli st ener

{
}

public void onMessage(Message nessage). ..

31.1.2. Using Bean Managed Transactions

Message driven beans can also be configured to use Bean Managed Transactions. In this case a User Transaction is
created. Thiswould be configured as follows:

109

Application Server Integration and Java EE

@kssageDri ven(name = "NMDB_BMPExanpl e,
activationConfig =

{
@\ct i vati onConfi gProperty(propertyNane = "destinati onType", propertyValue = "jave
@Act i vati onConfi gProperty(propertyNane = "destination", propertyValue = "queue/te
@\ct i vati onConfi gProperty(propertyNane = "acknow edgeMbde"”, propertyVal ue = "Dups
})

@r ansact i onManagenent (val ue= Transacti onManagenent Type. BEAN)
public class MDB_BMPExanpl e inpl ements Messageli st ener

{
}

public void onMessage(Message nessage)

When using Bean Managed transactions the message will be acknowledged outside the scope of the user transac-
tion and use the acknowledge mode specified by the user with the acknow edgeMbde property. There are only 2 ac-
ceptable values for this Aut o- acknow edge and Dups- ok- acknow edge.Not that because the message delivery is
outside the scope of the transaction afailure within the MDB will not cause the message to be redelivered.

A user would control the lifecycle of the transaction something like the following:

@Resour ce
MessageDri venCont ext ctx;

public void onMessage(Message nessage)

{
User Tr ansacti on tx;
try
{
Text Message t ext Message = (Text Message) nessage;
String text = textMessage. get Text();
User Transaction tx = ctx.getUserTransaction();
tx. begi n();
//do some stuff within the transaction
tx. xomm t();
catch (Exception e)
{
tx.roll back();
}
}

31.1.3. Using Message Selectors with MDB's

It isalso possible to use MDB's with message selectors. To do this simple define your message selector as follows:

@kssageDri ven(nanme = "NMDBMessageSel ect or Exanpl e",
activationConfig =

{
@A\ct i vati onConfi gProperty(propertyName = "destinati onType", propertyValue = "jave
@Act i vati onConfi gProperty(propertyName = "destination", propertyValue = "queue/te
@Act i vati onConfi gProperty(propertyName = "nessageSel ector"”, propertyValue = "colc
})

@r ansact i onManagenent (val ue= Transact i onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
public class MDBMessageSel ect or Exanpl e i npl enents Messageli st ener

{

public void onMessage(Message nessage). ...

110

Application Server Integration and Java EE

31.2. Sending Messages from within J2EE components

The JCA adapter can also be used for sending messages. The Connection Factory to use is configured by default in
thej ms-ds. xm file and is mapped to j ava: / InsXA. Using this from within a J2EE component will mean that the
sending of the message will be done as part of the XA transaction being used by the component. This means that if
the sending of the message fails the overall transaction would rollback and the message redelivered. Heres an ex-
ample of thisfrom within an MDB:

@kssageDri ven(nane = "MDBMessageSendTxExanpl e",

activationConfig =

{

@\ct i vati onConfi gProperty(propertyName = "destinati onType", propertyValue = "jave

@Act i vati onConfi gProperty(propertyNane
})

@r ansact i onManagenent (val ue= Transact i onManagenent Type. CONTAI NER)
@ransacti onAttri bute(val ue= Transacti onAttri but eType. REQUI RED)
public class MDBMessageSendTxExanpl e i npl ements Messageli st ener

{

@Resour ce(mappedNane = "java: JnsXA")
Connecti onFactory connecti onFactory;

@resour ce(mappedNane = "queue/ repl yQueue")
Queue repl yQueue;

public void onMessage(Message nessage)

{

Connection conn = null;

try

{

//Step 9. W& know the client is sending a text message so we cast
Text Message text Message = (Text Message) nessage;

//Step 10. get the text fromthe nmessage.
String text = textMessage. get Text();

Systemout.println("nessage " + text);

conn = connectionFactory. creat eConnection();

Sessi on sess = conn. creat eSessi on(fal se, Session. AUTO ACKNOALEDGE) ;
MessagePr oducer producer = sess. createProducer (repl yQueue);

producer. send(sess. creat eText Message("this is a reply"));

}
catch (Exception e)
{
e.printStackTrace();
}
finally
{
if(conn !'= null)
{
try
{

conn. cl ose();

}
catch (JMSException e)

"destination",

propertyVal ue = "queue/te

111

Application Server Integration and Java EE

31.3. Configuring the JCA Adapter

The Java Connector Architecture (JCA) Adapter iswhat alows JBM to be integrated with JEE components such as
MDB's and EJB's. It configures how components such as MDB's consume messages from the JBM server and also
how components such as EJB's or Servlet's can send messages.

The JBM JCA adapter is deployed viathe j ms-ra. rar archive. The configuration of the Adapter is found in this
archive under META- | NF/ ra. xni .

The configuration will look something like the following:

<r esour ceadapt er >
<r esour ceadapt er - cl ass>or g. j boss. nessagi ng. r a. JBMResour ceAdapt er </ r esour ceadapt er - cl ass>
<confi g- property>
<descri pti on>The transport type</description>
<confi g- property-nane>Connect or Cl assNanme</ confi g- property- name>
<confi g- property-type>j ava.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>org. j boss. nessagi ng. core. renoting.inpl.invm | nVMConnect or F
actory</confi g-property-val ue>
</ confi g- property>
<confi g- property>
<descri pti on>The transport configuration. These values nmust be in the form of key=val; key=val ; </
<confi g- property- nanme>Connect i onPar anmet er s</ conf i g- pr operty- name>
<confi g- property-type>j ava.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>j bmrenoti ng.i nvm serveri d=0</confi g- property-val ue>
</ confi g- property>

<out bound- r esour ceadapt er >
<connecti on-definition>
<managedconnecti onf act ory- cl ass>or g. j boss. messagi ng. r a. JBMVvanagedConnect i on
Fact or y</ managedconnecti onf act ory- cl ass>

<confi g- property>
<descripti on>The default session type</description>
<confi g- property-nane>Sessi onDef aul t Type</ confi g- property- name>
<confi g- property-type>j ava.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>j avax. j ns. Queue</ confi g- property-val ue>

</ confi g-property>

<confi g- property>
<description>Try to obtain a lock within specified nunber of seconds; |ess
than or equal to O disable this functionality</description>
<confi g- property- name>UseTryLock</ confi g- property- name>
<confi g- property-type>j ava. |l ang. I nt eger </ confi g- property-type>
<confi g- property-val ue>0</ confi g- property-val ue>

</ confi g- property>

<connecti onfactory-interface>org.jboss. nessagi ng. ra. JBMConnect i onFact ory

</ connecti onfactory-interface>

<connecti onfactory-inpl -cl ass>org. j boss. nessagi ng. ra. JBMConnect i onFact oryl np
</ connecti onfactory-inpl -cl ass>
<connection-interface>j avax.] ns. Sessi on</ connecti on-i nterface>

<connection-i npl - cl ass>org. j boss. nessagi ng. r a. JBMSessi on

</ connection-i npl - cl ass>

112

Application Server Integration and Java EE

</ connecti on-definition>

<transacti on- support >XATr ansact i on</transacti on- support >

<aut henti cati on- mechani sn»
<aut henti cati on- mechani smt ype>Basi cPasswor d
</ aut henti cati on- nechani smtype>
<credential -interface>j avax. resource. spi . security. PasswordCredenti a
</credential -i nterface>

</ aut henti cati on- nechani sn»

<reaut henti cati on-support >fal se</reaut henticati on-support>

</ out bound- r esour ceadapt er >

<i nbound- r esour ceadapt er >
<nessageadapt er >
<nessagel i st ener >
<messagel i st ener -t ype>j avax. j ms. MessageLi st ener </ nessagel i st ener -t ype>
<acti vati onspec>
<activati onspec-cl ass>org. j boss. nessagi ng.ra.infl ow. JBMActi vati onSpec
</ activationspec-cl ass>
<requi r ed- confi g- property>
<confi g- property-nane>desti nati on</ confi g- pr operty- nane>
</required-config-property>
</ activationspec>
</ messagel i st ener >
</ messageadapt er >
</i nbound- r esour ceadapt er >

</ resour ceadapt er >

There are 3 main partsto this configuration.

1. A setof global properties for the Adapter

2. The configuration for the outbound part of the adapter. This is used for creating JMS resources within EE
components.

3. The configuration of the inbound part of the adapter. Thisis used for controlling the consumption of messages
viaMDB's.

31.3.1. Adapter Global properties

Thefirst element you seeisr esour ceadapt er - cl ass which should be |eft unchanged. Thisisthe JBM resource ad-
apter class.

After that thereisalist of configuration properties. Thiswill be where most of the configuration is done. The first 2
configure the transport used by the adapter and the rest configure the connection itself.

The following table explains what each property isfor.

Table 31.1. Global Configuration Properties

Property Name Property Type Property Description

ConnectorClassName String The Connector class name see
Chapter 14 for info on available
connectors

113

Application Server Integration and Java EE

Property Name Property Type Property Description
ConnectionParameters String The transport configuration. These
values must be in the form of
key=val;key=val; and will be spe-
cific to the connector used
usel ocal Tx boolean True will enable local transaction
optimisation.
UseXA boolean Whether XA should be used
UserName String The user name to use when making
aconnection
Password String The password to use when making
aconnection
BackUpTransportType String The back up transport to use on
failure.
TransportConfiguration String The back up transport configura-
tion
DiscoveryGroupAddress String The discovery group address to use
to autodetect a server
DiscoveryGroupPort integer The port to use for discovery
DiscoveryRefreshTimeout long The timeout, in milli seconds, to
refresh.
Discoverylnitial WaitTimeout long The initial time to wait for discov-
ery.
LoadBalancingPolicyClassName | String The load balancing policy class to
use.
PingPeriod long The period, in milliseconds, to
ping the server for failure.
ConnectionTTL long Thetimeto live for the connection.
Call Timeout long the call timeout, in milli seconds,
for each packet sent.
DupsOK BatchSize integer The batch size of message acks to
useif Dups ok is used.
continued..
TransactionBatchSize integer The batch size to use for sending
messages within atransaction
ConsumerWindowSize integer The window size for the con-

114

Application Server Integration and Java EE

sumersinterna buffer.

ConsumerMaxRate integer The max rate a consumer can re-
ceive.

ProducerWindowSize integer The window size for the sending of
messages.

ProducerMaxRate integer The max rate a producer can send
messages.

MinLargeM essageSize integer The size a message can be, in

bytes, before it is sent as a multi
part large message.

BlockOnAcknowledge boolean If true then block on acknowledge
of messages.

BlockOnNonPersi stentSend boolean If true then block when sending
non persistent messages

BlockOnPersistentSend boolean If true then block when sending
persistent messages

AutoGroup boolean If true then auto group messages

MaxConnections integer The max number of connections.

PreAcknowledge boolean Whether to pre acknowledge mes-
sages before sending to consumer

Retrylnterval long How long to wait , in milli
seconds, before retrying a failed
connection

RetryIntervalMultiplier double Used for calculating the retry inter-
va

FailoverOnServerShutdown boolean If true client will reconnect to an-

other server if available

ClientID String Theclient ID of the connection

31.3.2. Adapter Outbound configuration

The outbound configuration should remain unchanged as they define connection factories that are used by Java EE
components. These Connection Factories can be defined inside a configuration file that matches the name
*-ds. xm . You'll find a default j ms- ds. xnl configuration under the messagi ng. sar directory in the Jooss AS de-
ployment. The connection factories defined in the config file inherit their properties from the main ra. xni config-
uration but can aso be overridden, the following example show how to define one.

Please note that this configuration only applies to install the JBM resource adapter in the JBoss Application Server.
If you are using another JEE application server please refer to your application servers documentation for how to

115

Application Server Integration and Java EE

do this.

<t x- connecti on-f act ory>
<j ndi - name>Renot eJms XA</ j ndi - name>
<xa-transaction/>
<rar-name>j ns-ra. rar</rar-name>
<connecti on-definition>org.jboss. nessagi ng. ra. JBMConnect i onFact ory
</ connecti on-definition>
<confi g-property nane="Sessi onDef aul t Type" type="String">j avax.j nms. Topi c
</ confi g- property>
<confi g- property nane="Connector Cl assNane" type="String">
org.j boss. nessagi ng. i ntegration.transports. netty. NettyConnector Factory
</ confi g- property>
<confi g- property nane="Connecti onParaneters" type="String">
jbmrenoting. netty. port=5445</confi g- property>
<max- pool - si ze>20</ max- pool - si ze>
</ tx-connection-factory>

In this example the connection factory will be bound to JNDI with the name Renot eJms XA and can be looked up in
the usual way using JNDI or defined within the EJB or MDB as such:

@Resour ce(mappedNane="j ava: Renot eJnms XA")
private ConnectionFactory connectionFactory;

The confi g- property elements are what over rides those in thera. xm config. Any of the elements pertaining to
the connection factory can be over ridden here.

31.3.3. Adapter Inbound configuration

The inbound configuration should again remain unchanged. This controls what forwards messages onto MDB's. It
is possible to override properties on the MDB by adding an activation configuration to the MDB itself. This could
be used to configure the MDB to consume from a different server. The next section demonstrates over riding the
configuration.

31.4. High Availability INDI (HA-JNDI)

If you are using JNDI to look-up JM S queues, topics and connection factories from a cluster of servers, it islikely
you will want to use HA-JNDI so that your INDI look-ups will continue to work if one or more of the serversin the
cluster fail.

HA-JINDI is aJBoss Application Server service which allows you to use JINDI from clients without them having to
know the exact JNDI connection details of every server in the cluster. This service is only available if using a
cluster of JBoss Application Server instances.

To use it use the following properties when connecting to JNDI.

Hasht abl e<String, String> jndi Paraneters = new Hashtabl e<String, String>();
j ndi Paraneters. put ("j ava. nam ng.factory.initial",

"org.jnp.interfaces. Nam ngCont ext Fact ory");
j ndi Par anet ers. put ("j ava. nam ng. factory. url . pkgs=",

"org.jboss.nam ng: org.jnp.interfaces");

initial Context = new | nitial Context(jndiParaneters);

116

Application Server Integration and Java EE

For more information on using HA-INDI see the JBoss Application Server clustering documentation
[http:/imww .jboss.org/fil e-access/defaul t/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.
html]

31.5. The JMS Bridge

JBoss Messaging includes afully functional message bridge.

The function of the bridge is to consume messages from a source queue or topic, and send them to atarget queue or
topic, typically on adifferent server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably send-
ing messages from one cluster to another, for instance across a WAN, and where the connection may be unreliable.

A bridge is deployed inside a JBoss AS instance. The instance can be the same instance as either the source or tar-
get server. Or could be on athird, separate JBoss AS instance.

The bridge can also be used to bridge messages from other non JBoss Messaging JMS servers, as long as they are
JMS 1.1 compliant.

Note

Don't confuse a JMS bridge with a core bridge. A JMS bridge can be used to bridge any two IMS 1.1 com-
pliant IMS providers and uses the IMS API. A core bridge (described in Chapter 34) is used to bridge any
two JBoss Messaging instances and uses the core API. Always use a core bridge if you can in preference to
a JMS bridge. The core bridge will typicaly provide better performance than a IMS bridge. Also the core
bridge can provide once and only once delivery guarantees without using XA.

The bridge has built-in resilience to failure so if the source or target server connection is lost, e.g. due to network
failure, the bridge will retry connecting to the source and/or target until they come back online. When it comes
back online it will resume operation as normal.

The bridge can be configured with an optional IMS selector, so it will only consume messages matching that IMS
selector

It can be configured to consume from a queue or a topic. When it consumes from a topic it can be configured to
consume using a hon durable or durable subscription

The bridge is deployed by the JBoss Micro Container via a beans configuration file. This would typically be de-
ployed inside the JBoss Application Server and the following example shows an example of a beans file that
bridges 2 destinations which are actually on the same server.

<?xm version="1.0" encodi ng="UTF-8"?>
<depl oynent xm ns="ur n:j boss: bean-depl oyer: 2. 0">

<bean nanme="JMSBri dge" cl ass="org.boss. nessagi ng.jns. bri dge.inpl.JMSBridgel npl ">
<I-- JBoss Messaging nust be started before the bridge -->
<depends>Messagi ngSer ver </ depends>
<construct or >
<I'-- Source ConnectionFactory Factory -->
<par aret er >

117

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Clustering_Guide/5/html/clustering-jndi.html

Application Server Integration and Java EE

<i nj ect bean="Sour ceCFF"/ >
</ par anet er >
<I-- Target ConnectionFactory Factory -->
<par anet er >

<i nj ect bean="Target CFF"/>
</ par anet er >
<I-- Source DestinationFactory -->
<par anet er >

<i nj ect bean="SourceDesti nati onFactory"/>
</ par anet er >
<l-- Target DestinationFactory -->
<par anet er >

<i nj ect bean="Target Desti nati onFactory"/>
</ par anet er >
<l-- Source User Nane (no usernane here) -->
<par anet er ><nul | /></ par anet er >
<l-- Source Password (no password here)-->
<par anet er ><nul | /></ par anet er >
<l-- Target User Nane (no usernane here)-->
<par anet er ><nul | /></ par anet er >
<l-- Target Password (no password here)-->
<par anet er ><nul | /></ par anet er >
<I-- Selector -->
<par anet er ><nul | /></ par anet er >
<l-- Failure Retry Interval (in ns) -->
<par anet er >5000</ par anet er >
<I-- Max Retries -->
<par anet er >10</ par anet er >
<I-- Quality O Service -->
<par anet er >ONCE_AND_ONLY_ONCE</ par anet er >
<I-- Max Batch Size -->
<par anet er >1</ par anet er >

<I-- Max Batch Tinme (-1 neans infinite) -->

<par anet er >- 1</ par anet er >

<l-- Subscription name (no subscription name here)-->
<par anet er ><nul | /></ par anet er >

<I-- Cdient ID (no client ID here)-->

<par anet er ><nul | /></ par anet er >
<l-- Add Messagel D In Header -->
<par anet er >t r ue</ par anet er >
</ constructor>
<property nane="transacti onManager" >
<i nj ect bean="Real Transacti onManager"/ >
</ property>
</ bean>

<I-- SourceCFF describes the ConnectionFactory used to connect to the
source destination -->
<bean name=" Sour ceCFF"
cl ass="org.j boss. nessagi ng. j nms. bri dge. i npl . JNDI Connect i onFact or yFact ory" >
<const ructor>
<par anet er >
<inject bean="JND" />
</ par anet er >
<par anet er >/ Connect i onFact or y</ par anet er >
</ constructor>
</ bean>

<I'-- Target CFF descri bes the Connecti onFactory used to connect to the
target destination -->
<bean name="Tar get CFF"
cl ass="org.j boss. nessagi ng. j ms. bri dge. i npl . JNDI Connect i onFact or yFact ory" >
<construct or>
<par anet er >
<inject bean="JND" />
</ par anet er >

118

Application Server Integration and Java EE

<par anet er >/ Connect i onFact or y</ par anet er >
</ constructor>
</ bean>

<I'-- SourceDestinationFactory describes the Destination used as the source -->
<bean nane="Sour ceDest i nati onFactory"
cl ass="org. j boss. nessagi ng. j nms. bri dge. i npl . JNDI Dest i nati onFact ory" >
<construct or >
<par anet er >
<i nj ect bean="JNDI " />
</ par anet er >
<par anet er >/ queue/ sour ce</ par anet er >
</ constructor>
</ bean>

<l-- TargetDestinationFactory describes the Destination used as the target -->
<bean nane="Tar get Desti nati onFactory"
cl ass="org.j boss. messagi ng. j nms. bri dge. i npl . JNDI Dest i nat i onFact ory" >
<constructor>
<par anet er >
<i nj ect bean="JNDI " />
</ par anet er >
<par anet er >/ queue/ t ar get </ par anet er >
</ const ruct or >
</ bean>

<l-- JNDI is a Hashtable containing the JNDI properties required -->
<I-- to connect to the sources and targets JMS resrouces -->
<bean nane="JNDI" cl ass="java. util.Hashtabl e">
<constructor class="java.util.Mp">
<map class="java. util.Hashtable" keyd ass="String"
val ued ass="String">
<entry>
<key>j ava. nami ng. factory.initial </ key>
<val ue>org. j np. i nterfaces. Nam ngCont ext Fact or y</ val ue>
</entry>
<entry>
<key>j ava. nami ng. provi der . ur | </ key>
<val ue>j np://1 ocal host: 1099</ val ue>
</entry>
<entry>
<key>j ava. nam ng. factory. url. pkgs</ key>
<val ue>org. j boss. nami ng: org. jnp.interfaces"</val ue>
</entry>
</ map>
</ construct or >
</ bean>

</ depl oynent >

31.5.1. JIMS Bridge Parameters

The main bean deployed is the JMsBri dge bean. The bean is configurable by the parameters passed to its construct-
or.

Note

To let a parameter be unspecified (for example, if the authentication is anonymous or no message selector
isprovided), use <nul | /> for the unspecified parameter value.

119

Application Server Integration and Java EE

Source Connection Factory Factory

This injects the Sour ceCFF bean (also defined in the beans file). This bean is used to create the source Connec-
tionFactory

Target Connection Factory Factory

This injects the Tar get CFF bean (also defined in the beans file). This bean is used to create the target Connec-
tionFactory

Source Destination Factory Factory

This injects the Sour ceDest i nat i onFact ory bean (also defined in the beans file). This bean is used to create
the source Dest i nat i on

Target Destination Factory Factory

This injects the Tar get Dest i nat i onFact ory bean (also defined in the beans file). This bean is used to create
the target Dest i nati on

Source User Name

this parameter is the username for creating the source connection
Source Password

this parameter is the parameter for creating the source connection
Target User Name

this parameter is the username for creating the target connection
Target Password

this parameter is the password for creating the target connection
Selector

This represents a JM S selector expression used for consuming messages from the source destination. Only mes-
sages that match the selector expression will be bridged from the source to the target destination

Note
Ut is always more efficient to apply selectors on source topic subscriptions to source queue consumers

The selector expression must follow the IMS selector syntax
[http://java.sun.com/j2ee/1.4/docs/ api/javax/jms/M essage.html]

Failure Retry Interval

This represents the amount of time in ms to wait between trying to recreate connections to the source or target
servers when the bridge has detected they have failed

120

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Application Server Integration and Java EE

Max Retries

This represents the number of times to attempt to recreate connections to the source or target servers when the
bridge has detected they have failed. The bridge will give up after trying this number of times. - 1 represents 'try
forever'

Quality Of Service
This parameter represents the desired quality of service mode

Possible values are:

e AT_MOST_ONCE

* DUPLI CATES_X

e ONCE_AND_ONLY_ONCE

See Section 31.5.4 for a explanation of these modes.
Max Batch Size

This represents the maximum number of messages to consume from the source destination before sending them
in a batch to the target destination. Its value must >= 1

Max Batch Time

This represents the maximum number of milliseconds to wait before sending a batch to target, even if the num-
ber of messages consumed has not reached MaxBat chSi ze. Its value must be - 1 to represent ‘wait forever', or >=
1 to specify an actua time

Subscription Name

If the source destination represents a topic, and you want to consume from the topic using a durable subscrip-
tion then this parameter represents the durabl e subscription name

Client ID

If the source destination represents a topic, and you want to consume from the topic using a durable subscrip-
tion then this attribute represents the the IMS client 1D to use when creating/looking up the durable subscription

Add Messagel D In Header

If t rue, then the original message's message 1D will be appended in the message sent to the destination in the
header JBM BRI DGE_MSG | D_LI ST. If the message is bridged more than once, each message ID will be appen-
ded. This enables a distributed request-response pattern to be used

Note

when you receive the message you can send back a response using the correlation id of the first messageid,
so when the original sender getsit back it will be ableto correlate it.

121

Application Server Integration and Java EE

31.5.2. Source and Target Connection Factories

The source and target connection factory factories are used to create the connection factory used to create the con-
nection for the source or target server.

The configuration example above uses the default implementation provided by JBoss Messaging that looks up the
connection factory using JNDI. For other Application Servers or IMS providers a new implementation may have to
be provided. This can easily be done by implementing the interface
org. j boss. nessagi ng. j ns. bri dge. Connecti onFact or yFactory.

31.5.3. Source and Target Destination Factories

Again, similarly, these are used to create or lookup up the destinations.

In the configuration example above, we have used the default provided by JBoss Messaging that ooks up the des-
tination using JNDI.

A new implementation can be provided by implementing

org. j boss. messagi ng. j ms. bri dge. Dest i nati onFact ory interface.

31.5.4. Quality Of Service

The quality of service modes used by the bridge are described here in more detail.

31.5.4.1. AT_MOST_ONCE

With this QoS mode messages will reach the destination from the source at most once. The messages are consumed
from the source and acknowledged before sending to the destination. Therefore there is a possibility that if failure
occurs between removing them from the source and them arriving at the destination they could be lost. Hence de-
livery will occur at most once.

This mode is available for both persistent and non persistent messages.

31.5.4.2. DUPLICATES_OK

With this QoS mode, the messages are consumed from the source and then acknowledged after they have been suc-
cessfully sent to the destination. Therefore there is a possibility that if failure occurs after sending to the destination
but before acknowledging them, they could be sent again when the system recovers. |.e. the destination might re-
ceive duplicates after afailure.

This mode is available for both persistent and non persistent messages.

31.5.4.3. ONCE_AND_ONLY_ONCE

This QoS mode ensures messages will reach the destination from the source once and only once. (Sometimes this
mode is known as "exactly once"). If both the source and the destination are on the same JBoss Messaging server
instance then this can be achieved by sending and acknowledging the messages in the same local transaction. If the
source and destination are on different servers thisis achieved by enlisting the sending and consuming sessionsin a
JTA transaction. The JTA transaction is controlled by JBoss Transactions JTA * implementation which is a fully

122

Application Server Integration and Java EE

recovering transaction manager, thus providing a very high degree of durability. If JTA is required then both sup-
plied connection factories need to be X A ConnectionFactory implementations. Thisis likely to be the slowest mode
since it requires extra persistence for the transaction logging.

This mode is only available for persistent messages.

Note

For a specific application it may possible to provide once and only once semantics without using the
ONCE_AND_ONLY_ONCE QoS levd. This can be done by using the DUPLICATES OK mode and then
checking for duplicates at the destination and discarding them. Some JMS servers provide automatic du-
plicate message detection functionality, or this may be possible to implement on the application level by
maintaining a cache of received message ids on disk and comparing received messages to them. The cache
would only be valid for a certain period of time so this approach is not as watertight as using
ONCE_AND_ONLY_ONCE but may be a good choice depending on your specific application.

31.5.4.4. Example

Please see Section 9.3.4 which shows how to configure and use a JIMS Bridge to send messages to the source des-
tination and consume them from the target destination.

31.6. XA Recovery

XA recovery deals with system or application failures to ensure that of a transaction are applied consistently to all
resources affected by the transaction, even if any of the application processes or the machine hosting them crash or
lose network connectivity. For more information on XA Recoveryplease refer to JBoss Transactions
[http://www.jboss.org/community/wiki/JBossTransactions).

When JBoss Messaging is integrated with JBoss AS, it can take advantage of JBoss Transactions to provide recov-
ery of messaging resources. If messages are involved in a XA transaction, in the event of a server crash, the recov-
ery manager will ensure that the transactions are recovered and the messages will either be committed or rolled
back (depending on the transaction outcome) when the server isrestarted.

31.6.1. XA Recovery Configuration
To enable JBoss Messagings XA Recovery, the Recovery Manager must be configured to connect to JBoss Mes-

saging to recover its resources. The following property must be added to the jta section of conf/
j bossts-properties.xm of JBossAS profiles:

<properties depends="arjuna" name="jta">

<property name="com arjuna. ats.jta.recovery. XAResour ceRecovery. JBVMESSAG NGL"
val ue="org. j boss. nessagi ng. j ns. server. recovery. Messagi ngXAResour ceRecovery; [connecti on cc
</ properties>

The [connection configuration] contains al the information required to connect to JBoss Messaging hode un-

123

http://www.jboss.org/community/wiki/JBossTransactions

Application Server Integration and Java EE

der theform [connector factory class name],[user nane], [password], [connector paraneters].

e [connector factory class nanme] corresponds to the name of the Connector Factory used to connect to
JBoss Messaging. Values can be org. j boss. nessagi ng. core. renoting. i npl . i nvm | nVMConnect or Fact ory
Or org. j boss. messagi ng.integration.transports. netty. NettyConnect or Factory

e [user nane] istheuser nameto create aclient session. It is optiona
» [password] isthe password to create aclient session. It is mandatory only if the user name is specified

e [connector paraneters] isalist of comma-separated key=value pair which are passed to the connector fact-
ory (see Chapter 14 for alist of the transport parameters).

Note

JBoss Messaging must have a valid acceptor which corresponds to the connector specified in conf/
j bossts-properties.xm.

31.6.1.1. Configuration Settings

If JBoss Messaging is configured with a default in-vm acceptor:

<acceptor nane="in-vni>
<factory-cl ass>org. | boss. nessagi ng. core.renoting.inpl.invmI|nVMAccept or Fact ory</factory-cl ass>
</ accept or >

the corresponding configuration in conf / j bosst s- properti es. xm iS:

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. JBMESSAG NGL"
val ue="org. j boss. nessagi ng. j ns. server. recovery. Messagi ngXAResour ceRecovery; org.] boss. nessagi ng. core. re

If it isnow configured with a netty acceptor on a non-default port:

<acceptor nane="netty">
<factory-cl ass>org.j boss. messagi ng.integration.transports.netty. NettyAcceptorFactory</factory-cl ass>
<param key="j bm renoting. netty. port" val ue="8888" type="Integer"/>

</ accept or >

the corresponding configuration in conf / j bosst s- properti es. xm is:

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. JBMESSAG NGL"
val ue="org. j boss. nessagi ng. j ns. server. recovery. Messagi ngXAResour ceRecovery; org. j boss. nessagi ng. i nt

Note

Note the additional commasto skip the user and password before connector parameters

124

Application Server Integration and Java EE

If the recovery must use adni n, adni npass, the configuration would have been:

<property nane="com arjuna.ats.jta.recovery. XAResour ceRecovery. JBMESSAG NGL"
val ue="org. j boss. nessagi ng. j ns. server.recovery. Messagi ngXAResour ceRecovery; or ¢

Configuring JBoss Messaging with an invm acceptor and configuring the Recovery Manager with an invm con-
nector is the recommended way to enable XA Recovery.

31.6.2. Example

See Section 9.3.8 which shows how to configure XA Recovery and recover messages after a server crash.

125

32

Client Reconnection

JBoss Messaging clients can be configured to automatically reconnect to the server in the event that afailure is de-
tected in the connection between the client and the server. If the client successfully reconnects, and the server still
has a record of the clients session (i.e. the server was not restarted) then the client will transparently re-attach to the
session and it will be able to resume asif nothing had happened.

Client reconnection is also used internally by components such as core bridges to allow them to reconnect to their
target servers.

Client reconnection is configured using the following parameters:

e retry-interval . Thisoptional parameter determines the period in milliseconds between subsequent reconnec-
tion attempts, if the connection to the target server hasfailed. The default value is 2000 milliseconds.

e retry-interval -nultiplier. Thisoptiona parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

This alows you to implement an exponential backoff between retry attempts.
Let's take an example:

If wesetretry-interval t01000 msand wesetretry-interval -multiplier to 2.0, then, if the first recon-
nect attempt fails, we will wait 1000 msthen 2000 ms then 4000 ms between subseguent reconnection attempts.

The default valueis 1. 0 meaning each reconnect attempt is spaced at equal intervals.

* reconnect-attenpts. This optional parameter determines the total number of reconnect attempts the bridge
will make before giving up and shutting down. A value of -1 signifies an unlimited number of attempts. The
default valueis- 1.

If you're using IMS, and you're using the IMS Service on the server to load your JM S connection factory instances
directly into JNDI, then you can specify these parametersin the xml configuration inj bm j ms. xm , for example:

<connection-factory nane="Connecti onFactory">
<connect or-ref connector-name="netty"/>
<entries>
<entry name="Connecti onFactory"/>
<entry nane="XAConnecti onFactory"/>
</entries>
<retry-interval >1000</retry-interval >
<retry-interval -multiplier>1.5</retry-interval-nultiplier>
<reconnect - at t enpt s>1000</r econnect - at t enpt s>
</ connection-factory>

126

Client Reconnection

If you're using IMS, but instantiating your JMS connection factory directly, you can specify the parameters using
the appropriate setter methods on the JBossConnect i onFact ory immediately after creating it.

If you're using the core API and instantiating the d i ent Sessi onFact ory instance directly you can also specify the
parameters using the appropriate setter methods on the d i ent Sessi onFact ory immediately after creating it.

If your client does manage to reconnect but the session is no longer available on the server, for instance if the serv-
er has been restarted or it has timed out, then the client won't be able to re-attach, and any Except i onLi st ener or
Fai | ureLi st ener instances registered on the connection or session will be called.

127

33

Diverting and Splitting Message Flows

JBoss Messaging allows you to configure objects called diverts with some simple server configuration.

Diverts allow you to transparently divert messages routed to one address to some other address, without making
any changes to any client application logic.

Diverts can be exclusive, meaning that that the message is diverted to the new address, and does not go to the old
address at al, or they can be non-exclusive which means the message continues to go the old address, and a copy of
it is also sent to the new address. Non-exclusive diverts can therefore be used for splitting message flows, e.g. there
may be a requirement to monitor every order sent to an order queue.

Diverts can aso be configured to have an optional message filter. If specified then only messages that match the
filter will be diverted.

Diverts can also be configured to apply aTr ansf or ner . If specified, all diverted messages will have the opportunity
of being transformed by the Tr ansf or ner .

A divert will only divert a message to an address on the same server, however, if you want to divert to an address
on adifferent server, a common pattern would be to divert to alocal store-and-forward queue, then set up a bridge
which consumes from that queue and forwards to an address on a different server.

Diverts are therefore a very sophisticated concept, which when combined with bridges can be used to create inter-
esting and complex routings. The set of diverts on a server can be thought of as a type of routing table for mes-
sages. Combining diverts with bridges allows you to create a distributed network of reliable routing connections
between multiple geographically distributed servers, creating your globa messaging mesh.

Diverts are defined as xml inthej bm confi gurati on. xnl file. There can be zero or more divertsin the file.
Please see Section 9.1.13 for a full working example showing you how to configure and use diverts.

Let'stake alook at some divert examples:

33.1. Exclusive Divert

Let'stake alook at an exclusive divert. An exclusive divert diverts all matching messages that are routed to the old
address to the new address. Matching messages do not get routed to the old address.

Here's some example xml configuration for an exclusive divert, it's taken from the divert example:

<di vert nane="prices-divert">
<address>j ms. t opi c. pri ceUpdat es</ addr ess>
<f or war di ng- addr ess>j ns. queue. pri ceForwar di ng</ f or war di ng- addr ess>

128

Diverting and Splitting Message Flows

<filter string="office="New York'"/>
<t ransf or ner - cl ass- nane>
org. j boss. | ns. exanpl e. AddFor war di ngTi meTr ansf or ner
</ transf orner-cl ass- nane>
<excl usi ve>t rue</ excl usi ve>
</ divert>

We define a divert caled 'prices-divert' that will divert any messages sent to the address
' ms. topi c. pri ceUpdat es' (this corresponds to any messages sent to aJJM S Topic called 'pri ceUpdat es') to anoth-
er local address'j ns. queue. pri ceFor war di ng' (this correspondsto alocal IMS queue called 'pri ceFor war di ng'

We also specify a message filter string so only messages with the message property of fi ce with value New Yor k
will get diverted, al other messages will continue to be routed to the normal address. The filter string is optional, if
not specified then all messages will be considered matched.

In this example a transformer class is specified. Again this is optional, and if specified the transformer will be ex-
ecuted for each matching message. This allows you to change the messages body or properties before it is diverted.
In this example the transformer simply adds a header that records the time the divert happened.

This example is actually diverting messages to a local store and forward queue, which is configured with a bridge
which forwards the message to an address on another JBoss Messaging server. Please see the example for more de-
tails.

33.2. Non-exclusive Divert

Now welll take alook at a non-exclusive divert. Non exclusive diverts are the same as exclusive diverts, but they
only forward a copy of the message to the new address. The original message continues to the old address

Y ou can therefore think of non-exclusive diverts as splitting a message flow.

Non exclusive diverts can be configured in the same was as exclusive diverts with an optional filter and trans-
former, here's an example non-exclusive divert, again from the divert example:

<di vert nane="order-divert">
<addr ess>j ns. queue. or der s</ addr ess>
<f or war di ng- addr ess>j ns. t opi ¢. spyTopi c</ f or war di ng- addr ess>
<excl usi ve>f al se</ excl usi ve>

</ divert>

The above divert example takes a copy of every message sent to the address 'j ns. queue. or ders' (Which corres-
ponds to a IMS Queue called 'or der s') and sends it to alocal address called 'j ms. t opi ¢. SpyTopi ¢' (which corres-
pondsto a JMS Topic called 'spyTopi c¢').

129

34

Core Bridges

The function of a bridge is to consume messages from a source queue, and forward them to atarget address, typic-
aly on adifferent JBoss Messaging server.

The source and target servers do not have to be in the same cluster which makes bridging suitable for reliably send-
ing messages from one cluster to another, for instance across a WAN, and where the connection may be unreliable.

The bridge has built in resilience to failure so if the target server connection is lost, e.g. due to network failure, the

bridge will retry connecting to the target until it comes back online. When it comes back online it will resume oper-
ation asnormal.

In summary, bridges are a way to reliably connect two separate JBoss Messaging servers together. With a core
bridge both source and target servers must be JBoss Messaging servers.

Bridges can be configured provide once and only once delivery guarantees even in the event of the failure of the
source or the target server. They do this by using duplicate detection (described in Chapter 35).

Note

Although they have similar function, don't confuse core bridges with JM S bridges!

Core bridges are for linking a JBoss Messaging node with ancther JBoss Messaging node and do not use
the IMS API. A JMS Bridge is used for linking any two JMS 1.1 compliant IMS providers. So, a IMS
Bridge could be used for bridging to or from different IMS compliant messaging system. It's always prefer-
able to use a core bridge if you can. Core bridges use duplicate detection to provide once and only once
guarantees. To provide the same guarantee using a JMS bridge you would have to use XA which has a
higher overhead and is more complex to configure.

34.1. Configuring Bridges

Bridges are configured in j bm confi gurati on. xm . Let's kick off with an example (thisis actually from the bridge
example):

<bri dge nane="ny- bri dge">
<queue- nane>j ms. queue. sausage- f act or y</ queue- nane>
<f or war di ng- addr ess>j ns. queue. m nci ng- machi ne</ f or war di ng- addr ess>
<filter-string="nane="aardvark'"/>
<transf or mer - cl ass- name>
org.j boss. jnms. exanpl e. Hat Col our ChangeTr ansf or mer
</ transf orner-cl ass- nanme>
<retry-interval >1000</retry-interval >
<retry-interval -multiplier>1.0</retry-interval-nultiplier>
<reconnect - attenpt s>- 1</ reconnect - att enpt s>

130

Core Bridges

<fai |l over - on-server - shut down>f al se</f ai | over - on- ser ver - shut down>
<use-dupl i cat e-det ecti on>true</use-duplicate-detection>
<connect or-ref connector-nanme="renot e- connect or"
backup- connect or - nane="backup- r enot e- connect or"/ >
</ bri dge>

Please also note that in order for bridges to be deployed on a server, the cl ust er ed attribute needsto be settotrue
inj bm configuration. xm .

In the above example we have shown all the parameters its possible to configure for a bridge. In practice you might
use many of the defaults so it won't be necessary to specify them all explicitly.

Let'stake alook at all the parametersin turn:

* nane attribute. All bridges must have a unique name in the server.

* queue- nane. Thisis the unique name of the local queue that the bridge consumes from, it's a mandatory para-
meter.

The queue must already exist by the time the bridge is instantiated at start-up.

Note

If you're using M S then normally the IMS configuration j bm j nms. xmi is loaded after the core configura-
tion file j bm confi guration. xn is loaded. If your bridge is consuming from a JMS queue then you'll
need to make sure the IMS queue is also deployed as a core queue in the core configuration. Take alook at
the bridge example for an example of how thisis done.

* forwarding-address. Thisis the address on the target server that the message will be forwarded to. If a for-
warding address is not specified then the original destination of the message will be retained.

e filter-string. Anoptiona filter string can be supplied. If specified then only messages which match the filter
expression specified in the filter string will be forwarded. The filter string follows the JBoss Messaging filter
expression syntax described in Chapter 12.

e transforner-class-nanme. An optiona transformer-class-name can be specified. This is the name of a user-
defined class which implementsthe or g. j boss. nessagi ng. core. server. cl ust er. Transf or ner interface.

If thisis specified then the transformer'st r ansf or m() method will be invoked with the message before it is for-
warded. This gives you the opportunity to transform the message's header or body before forwarding it.

e retry-interval . Thisoptional parameter determines the period in milliseconds between subsequent reconnec-
tion attempts, if the connection to the target server hasfailed. The default value is 2000milliseconds.

* retry-interval-multiplier. Thisoptiona parameter determines determines a multiplier to apply to the time
since the last retry to compute the time to the next retry.

This allows you to implement an exponential backoff between retry attempts.

Let'stake an example:

131

Core Bridges

If wesetretry-interval to 1000 msand we Setretry-interval -nul tiplier to 2.0, then, if the first recon-
nect attempt fails, we will wait 1000 msthen 2000 ms then 4000 ms between subseguent reconnection attempts.

The default value is 1. 0 meaning each reconnect attempt is spaced at equal intervals.

reconnect - att enpts. This optional parameter determines the total number of reconnect attempts the bridge
will make before giving up and shutting down. A value of -1 signifies an unlimited number of attempts. The
default valueis- 1.

fail over - on-server - shut down. This optional parameter determines whether the bridge will attempt to failover
onto a backup server (if specified) when the target server is cleanly shutdown rather than crashed.

The bridge connector can specify both alive and a backup server, if it specifies a backup server and this para-
meter is set to t rue then if the target server is cleanly shutdown the bridge connection will attempt to failover
onto its backup. If the bridge connector has no backup server configured then this parameter has no effect.

Sometimes you want a bridge configured with a live and a backup target server, but you don't want to failover
to the backup if the live server is simply taken down temporarily for maintenance, this is when this parameter
comes in handy.

The default value for this parameter ist al se.

use- dupl i cat e- det ecti on. This optional parameter determines whether the bridge will automatically insert a
duplicate id property into each message that it forwards.

Doing so, allows the target server to perform duplicate detection on messages it receives from the source server.
If the connection fails or server crashes, then, when the bridge resumes it will resend unacknowledged mes-
sages. This might result in duplicate messages being sent to the target server. By enabling duplicate detection
alows these duplicates to be screened out and ignored.

This alows the bridge to provide a once and only once delivery guarantee without using heavyweight methods
such as XA (see Chapter 35 for more information).

The default value for this parameter ist r ue.

connect or -ref . This mandatory parameter determines which connector pair the bridge will use to actually
make the connection to the target server.

A connector encapsulates knowledge of what transport to use (TCP, SSL, HTTP etc) as well as the server con-
nection parameters (host, port etc). For more information about what connectors are and how to configure them,
please see Chapter 14.

The connect or - ref element can be configured with two attributes:

e connector-nane. This references the name of a connector defined in the core configuration file j bm
confi guration. xnl . The bridge will use this connector to make its connection to the target server. This at-
tribute is mandatory.

e backup- connect or - narme. This optional parameter also references the name of a connector defined in the
core configuration file j bm confi guration. xn . It represents the connector that the bridge will fail-over

132

Core Bridges

onto if it detects the live server connection has failed. If this is specified and fail over-
on- server - shut down IS set to true then it will also attempt failover onto this connector if the live target
server is cleanly shut-down.

133

35

Duplicate Message Detection

JBoss Messaging includes powerful automatic duplicate message detection, filtering out duplicate messages
without you having to code your own fiddly duplicate detection logic at the application level. This chapter will ex-
plain what duplicate detection is, how JBoss Messaging uses it and how and where to configure it.

When sending messages from a client to a server, or indeed from a server to another server, if the target server or
connection fails sometime after sending the message, but before the sender receives a response that the send (or
commit) was processed successfully then the sender cannot know for sure if the message was sent successfully to
the address.

If the target server or connection failed after the send was received and processed but before the response was sent
back then the message will have been sent to the address successfully, but if the target server or connection failed
before the send was received and finished processing then it will not have been sent to the address successfully.
From the senders point of view it's not possible to distinguish these two cases.

When the server recovers this leaves the client in a difficult situation. It knows the target server failed, but it does
not know if the last message reached its destination ok. If it decides to resend the last message, then that could res-
ult in a duplicate message being sent to the address. If each message was an order or atrade then this could result in
the order being fulfilled twice or the trade being double booked. Thisis clearly not a desirable situation.

Sending the message(s) in a transaction does not help out either. If the server or connection fails while the transac-
tion commit is being processed it is al so indeterminate whether the transaction was successfully committed or not!

To solve these issues JBoss Messaging provides automatic duplicate messages detection for messages sent to ad-
dresses.

35.1. Using Duplicate Detection for Message Sending

Enabling duplicate message detection for sent messages is simple: you just need to set a special property on the
message to a unique value. Y ou can create the value however you like, aslong as it is unique. When the target serv-
er receives the message it will check if that property is set, if it is, then it will check initsin memory cache if it has
already received a message with that value of the header. If it has received a message with the same value before
then it will ignore the message.

Note

Using duplicate detection to move messages between nodes can give you the same once and only once de-
livery guarantees as if you were using an XA transaction to consume messages from source and send them
to the target, but with less overhead and much easier configuration than using XA.

If you're sending messages in a transaction then you don't have to set the property for every message you send in

134

Duplicate Message Detection

that transaction, you only need to set it once in the transaction. If the server detects a duplicate message for any
message in the transaction, then it will ignore the entire transaction.

The name of the property that you set is given by the vaue of
org. j boss. messagi ng. cor e. message. i npl . HOR_DUPLI CATE_DETECTI ON_I D, whichis_JBM DUPL_I D

The value of the property can be of type byt e[] or Si npl eStri ng if you're using the core API. If you're using IMS
it must be a string, and it's valid should be unique. An easy way of generating a unique id is by generating a
UUID.

Here's an example of setting the property using the core API:

d i ent Message nessage = session. created ient Message(true);
Sinpl eString nyUniquelD = "This is nmy unique id"; /1 Could use a UWUD for this

nmessage. set Stri ngProperty(HDR_DUPLI CATE_DETECTI ON_I D, nyUni quel D) ;

And here's an example using the IMS API:

Message j neMessage = sessi on. creat eMessage();
String myUniquelD = "This is nmy unique id"; /1 Could use a UU D for this

nmessage. set Stri ngProperty(HDR DUPLI CATE_DETECTI ON_I D.toString(), myUniquel D);

35.2. Configuring the Duplicate ID Cache

The server maintains caches of received values of the
org. j boss. messagi ng. cor e. nessage. i mpl . HDR_DUPLI CATE_DETECTI ON_I D property sent to each address. Each
address has its own distinct cache.

The cacheis acircular fixed size cache. If the cache has a maximum size of n elements, then then + 1thid stored
will overwrite the oth element in the cache.

The maximum size of the cacheis configured by the parameter i d- cache- si ze inj bm confi gurati on. xni , the de-
fault value is 2000 elements.

The caches can aso be configured to persist to disk or not. Thisis configured by the parameter per si st -i d- cache,
alsoinjbmconfiguration.xn . If thisisset totrue then each id will be persisted to permanent storage as they are
received. The default value for this parameter ist r ue.

Note

135

Duplicate Message Detection

When choosing a size of the duplicate id cache be sure to set it to a larger enough size so if you resend
messages all the previously sent ones are in the cache not having been overwritten.

35.3. Duplicate Detection and Bridges

Core bridges can configured to automatically add a unique duplicate id value (if there isn't already one in the mes-
sage) before forwarding the message to it's target. This ensures that if the target server crashes or the connection is
interrupted and the bridge resends the message, then if it has already been received by the target server, it will be
ignored.

To configure a core bridge to add the duplicate id header, simply set the use- dupl i cat e- det ecti on tO t rue when
configuring abridgeinj bm confi gurati on. xm .

The default value for this parameter ist r ue.

For more information on core bridges and how to configure them, please see Chapter 34.

35.4. Duplicate Detection and Cluster Connections

Cluster connections internally use core bridges to move messages reliable between nodes of the cluster. Con-
sequently they can also be configured to insert the duplicate id header for each message they move using their in-
ternal bridges.

To configure a cluster connection to add the duplicate id header, simply set the use- dupl i cat e- det ecti on tO t rue
when configuring a cluster connectioninj bm conf i gurati on. xni .

The default value for this parameter ist r ue.

For more information on cluster connections and how to configure them, please see Chapter 36.

35.5. Duplicate Detection and Paging

JBoss Messaging also uses duplicate detection when paging messages to storage. This is so when a message is de-
paged from storage and server failure occurs, we do not end up depaging the message more than once which could
result in duplicate delivery.

For more information on paging and how to configure it, please see Chapter 23.

136

36

Clusters

36.1. Clusters Overview

JBoss Messaging clusters allow groups of JBoss Messaging servers to be grouped together in order to share mes-
sage processing load. Each active node in the cluster is an active JBoss Messaging server which manages its own
messages and handles its own connections. A server must be configured to be clustered, you will need to set the
clustered elementinthej bm confi guration. xnl configuration filetotrue, thisisf al se by default.

The cluster is formed by each node declaring cluster connections to other nodes in the core configuration file j bm
confi guration.xm . When a node forms a cluster connection to another node, internally it creates a core bridge
(as described in Chapter 34) connection between it and the other node, this is done transparently behind the scenes
- you don't have to declare an explicit bridge for each node. These cluster connections allow messages to flow
between the nodes of the cluster to balance load.

Nodes can be connected together to form a cluster in many different topologies, we will discuss a couple of the
more common topologies later in this chapter.

WEell also discuss client side load balancing, where we can balance client connections across the nodes of the
cluster, and we'll consider message redistribution where JBoss Messaging will redistribute messages between nodes
to avoid starvation.

Another important part of clustering is server discovery where servers can broadcast their connection details so cli-
ents or other servers can connect to them with the minimum of configuration.

36.2. Server discovery

Server discovery is a mechanism by which servers can broadcast their connection settings across the network. This
isuseful for two purposes:

« Discovery by messaging clients. A messaging client wants to be able to connect to the servers of the cluster
without having specific knowledge of which serversin the cluster are up at any one time. Messaging clients can
beinitialised with an explicit list of the serversin a cluster, but thisis not flexible or maintainable as servers are
added or removed from the cluster.

» Discovery by other servers. Servers in a cluster want to be able to create cluster connections to each other
without having prior knowledge of all the other serversin the cluster.

Server discovery uses UDP [http://en.wikipedia.org/wiki/User_Datagram_Protocol] multicast to broadcast server
connection settings. If UDP is disabled on your network you won't be able to use this, and will have to specify

137

http://en.wikipedia.org/wiki/User_Datagram_Protocol

Clusters

servers explicitly when setting up a cluster or using a messaging client.

36.2.1. Broadcast Groups

A broadcast group is the means by which a server broadcasts connectors over the network. A connector defines a
way in which a client (or other server) can make connections to the server. For more information on what a con-
nector is, please see Chapter 14.

The broadcast group takes a set of connector pairs, each connector pair contains connection settings for a live and
(optional) backup server and broadcasts them on the network. It also defines the UDP address and port settings.

Broadcast groups are defined in the server configuration file j bm confi gurati on. xm . There can be many broad-
cast groups per JBoss Messaging server. All broadcast groups must be defined in abr oadcast - gr oups element.

Let'stake alook at an example broadcast group from j bm confi gurati on. xm :

<br oadcast - gr oups>
<br oadcast - gr oup nane="ny- br oadcast - gr oup" >
<l ocal - bi nd- port >54321</ | ocal - bi nd- port >
<gr oup- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- port >9876</ gr oup- port >
<br oadcast - peri 0d>1000</ br oadcast - peri od>
<connect or-ref connector-nanme="netty-connector"
backup- connect or - nane="backup- connector"/ >
</ br oadcast - gr oup>
</ br oadcast - gr oups>

Some of the broadcast group parameters are optional and you'll normally use the defaults, but we specify them all
in the above example for clarity. Let's discuss each onein turn:

e nane attribute. Each broadcast group in the server must have a unique name.

e local - bi nd-address. Thisisthe loca bind address that the datagram socket is bound to. If you have multiple
network interfaces on your server, you would specify which one you wish to use for broadcasts by setting this
property. If this property is not specified then the socket will be bound to the wildcard address, an |P address
chosen by the kernel.

* local -bi nd-port. If you want to specify alocal port to which the datagram socket is bound you can specify it
here. Normally you would just use the default value of - 1 which signifies that an anonymous port should be
used.

* group-address. Thisis the multicast address to which the data will be broadcast. It isa class D IP address in
the range 224. 0. 0. 0 t0 239. 255. 255. 255, inclusive. The address 224. 0. 0. 0 isreserved and is not available for
use. This parameter is mandatory.

e group-port. Thisisthe UDP port number used for broadcasting. This parameter is mandatory.

* Dbroadcast-period. Thisis the period in milliseconds between consecutive broadcasts. This parameter is op-
tional, the default value is 1000 milliseconds.

e connector-ref. This specifies the connector and optional backup connector that will be broadcasted (see
Chapter 14 for more information on connectors). The connector to be broadcasted is specified by the connect -
or - nane attribute, and the backup connector to be broadcasted is specified by the backup- connect or attribute.

138

Clusters

The backup- connect or attribute is optional.

36.2.2. Discovery Groups

While the broadcast group defines who connector information is broadcast from a server, a discovery group defines
how connector information is received from a multicast address.

A discovery group maintains a list of connector pairs - one for each broadcast by a different server. Asit receives
broadcasts on the multicast group address from a particular server it updatesits entry in thelist for that server.

If it has not received a broadcast from a particular server for alength of time it will remove that server's entry from
itslist.

Discovery groups are used in two places in JBoss Messaging:

» By cluster connections so they know what other serversin the cluster they should make connections to.

» By messaging clients so they can discovery what serversin the cluster that they can connect to.

36.2.3. Defining Discovery Groups on the Server

For cluster connections, discovery groups are defined in the server side configuration filej bm confi gurati on. xni .
All discovery groups must be defined inside a di scover y- gr oups element. There can be many discovery groups
defined by JBoss Messaging server. Let'slook at an example:

<di scovery- groups>
<di scovery-group nane="nmny-di scovery-group">
<gr oup- addr ess>231. 7. 7. 7</ gr oup- addr ess>
<gr oup- por t >9876</ gr oup- port >
<refresh-ti neout >10000</r ef r esh-ti meout >
</ di scovery-group>
</ di scovery-groups>

Well consider each parameter of the discovery group:

* nane attribute. Each discovery group must have a unique name per server.

e group-address. Thisisthe multicast ip address of the group to listen on. It should match the gr oup- address in
the broadcast group that you wish to listen from. This parameter is mandatory.

e group-port. Thisis the UDP port of the multicast group. It should match the gr oup- port in the broadcast
group that you wish to listen from. This parameter is mandatory.

e refresh-tineout. Thisisthe period the discovery group waits after receiving the last broadcast from a particu-
lar server before removing that servers connector pair entry from itslist. Y ou would normally set thisto avalue
significantly higher than the br oadcast - peri od on the broadcast group otherwise servers might intermittently
disappear from the list even though they are still broadcasting due to dight differencesin timing. This paramet-
er isoptional, the default valueis 10000 milliseconds (10 seconds).

139

Clusters

36.2.4. Discovery Groups on the Client Side

Let's discuss how to configure a JBoss Messaging client to use discovery to discover alist of servers to which it
can connect. The way to do this differs depending on whether you're using JIMS or the core API.

36.2.4.1. Configuring client discovery using JMS

If you're using JMS and you're also using the IMS Service on the server to load your JM S connection factory in-
stances into JNDI, then you can specify which discovery group to use for your JMS connection factory in the serv-
er side xml configuration j bm j ms. xn . Let'stake alook at an example:

<connecti on-factory name="Connecti onFactory">
<di scovery-group-ref discovery-group-nanme="ny-di scovery-group"/>
<entries>
<entry name="Connecti onFactory"/>
</entries>
</ connecti on-factory>

The element di scover y- group- ref Specifies the name of adiscovery group defined inj bm confi gurati on. xni .

When this connection factory is downloaded from JNDI by a client application and JMS connections are created
from it, those connections will be load-balanced across the list of servers that the discovery group maintains by
listening on the multicast address specified in the discovery group configuration.

If you're using JMS, but you're not using JNDI to lookup a connection factory - you're instantiating the IM S con-
nection factory directly then you can specify the discovery group parameters directly when creating the JM S con-
nection factory. Here's an example:

final String groupAddress = "231.7.7.7"
final int groupPort = 9876;

Connecti onFactory j nsConnecti onFactory =
new JBossConnecti onFact or y(gr oupAddr ess, groupPort);

Connection jnsConnectionl = jnsConnecti onFactory. createConnection();

Connection jnsConnection2 = jnsConnecti onFactory. createConnection();

Therefresh-timeout can be set directly on the connection factory by using the setter method set Di scover yRe-
freshTimeout () if you want to change the default val ue

There is dso a further parameter settable on the connection factory using the setter method set I niti al Wi t -
Ti meout () . If the connection factory is used immediately after creation then it may not have had enough time to re-
ceived broadcasts from all the nodes in the cluster. On first usage, the connection factory will make sure it waits
this long since creation before creating the first connection. The default value for this parameter is 2000 milli-
seconds.

36.2.4.2. Configuring client discovery using Core

If you're using the core API to directly instantiate d i ent Sessi onFact ory instances, then you can specify the dis-
covery group parameters directly when creating the session factory. Here's an example:fina String groupAddress =
"231.7.7.7"; final int groupPort = 9876; SessionFactory factory = new ClientSessionFactorylmpl(groupAddress,

140

Clusters

groupPort); ClientSession sessionl = factory.createClientSession(...); ClientSession session2 = fact-
ory.createClientSession(...);

Therefresh-tinmeout can be set directly on the session factory by using the setter method set Di scover yRef r esh-
Tineout() if you want to change the default val ue.

There is dso a further parameter settable on the session factory using the setter method
setlnitial WaitTineout (). If the session factory is used immediately after creation then it may not have had
enough time to received broadcasts from all the nodes in the cluster. On first usage, the session factory will make
sure it waits this long since creation before creating the first session. The default value for this parameter is 2000
milliseconds.

36.3. Server-Side Message Load Balancing

If cluster connections are defined between nodes of a cluster, then JBoss Messaging will load balance messages ar-
riving from at a particular node from aclient.

Let's take a simple example of a cluster of four nodes A, B, C, and D arranged in a symmetric cluster (described in
Section 36.7.1). We have aqueue called o der ueue deployed on each node of the cluster.

We have client Ca connected to node A, sending orders to the server. We have aso have order processor clients Pa,
Pb, Pc, and Pd connected to each of the nodes A, B, C, D. If no cluster connection was defined on node A, then as
order messages arrive on node A they will all end up in the & der Queue on node A, so will only get consumed by
the order processor client attached to node A, Pa.

If we define a cluster connection on node A, then as ordered messages arrive on node A instead of all of them go-
ing into the local O der Queue instance, they are distributed in a round-robin fashion between al the nodes of the
cluster. The messages are forwarded from the receiving node to other nodes of the cluster. Thisis all done on the
server side, the client maintains a single connection to node A.

For example, messages arriving on node A might be distributed in the following order between the nodes: B, D, C,
A, B, D, C, A, B, D. The exact order depends on the order the nodes started up, but the algorithm used is round
robin.

JBoss Messaging cluster connections can be configured to always blindly load balance messages in a round robin
fashion irrespective of whether there are any matching consumers on other nodes, but they can be a bit cleverer
than that and also be configured to only distribute to other nodes if they have matching consumers. We'll look at
both these cases in turn with some examples, but first we'll discuss configuring cluster connectionsin general.

36.3.1. Configuring Cluster Connections

Cluster connections group servers into clusters so that messages can be load balanced between the nodes of the
cluster. Let's take a look at a typical cluster connection. Cluster connections are aways defined in jbm
configuration.xm insideacl uster-connection element. There can be zero or more cluster connections defined
per JBoss Messaging server.

<cl ust er - connecti ons>
<cl ust er-connection nane="ny-cl uster">
<addr ess>j ns</ addr ess>
<retry-interval >500</retry-interval >

141

Clusters

<use-dupl i cat e-det ecti on>true</use-duplicate-detection>
<f or war d- when- no- consuner s>f al se</ f or war d- when- no- consuner s>
<max- hops>1</ max- hops>
<di scovery-group-ref discovery-group-nanme="ny-di scovery-group"/>
</ cl ust er-connecti on>
</ cl ust er-connecti ons>

In the above cluster connection all parameters have been explicitly specified. In practice you might use the defaults
for some.

e address. Each cluster connection only applies to messages sent to an address that starts with this value.

In this case, this cluster connection will load balance messages sent to address that start with j ns. This cluster
connection, will, in effect apply to all IMS queue and topic subscriptions since they map to core queues that
start with the substring "jms".

The address can be any value and you can have many cluster connections with different values of address,
simultaneously balancing messages for those addresses, potentially to different clusters of servers. By having
multiple cluster connections on different addresses a single JBoss Messaging Server can effectively take part in
multiple clusters simultaneously.

By careful not to have multiple cluster connections with overlapping values of address, e.g. "europe" and
"europe.news" since this could result in the same messages being distributed between more than one cluster
connection, possibly resulting in duplicate deliveries.

This parameter is mandatory.

e retry-interval . We mentioned before that, internally, cluster connections cause bridges to be created between
the nodes of the cluster. If the cluster connection is created and the target node has not been started, or say, is
being rebooted, then the cluster connections from other nodes will retry connecting to the target until it comes
back up, in the same way as a bridge does.

This parameter determines the interval in milliseconds between retry attempts. It has the same meaning as the
retry-interval onabridge (asdescribed in Chapter 34).

This parameter is optional and its default value is 500 milliseconds.

e use-duplicate-detection. Internaly cluster connections use bridges to link the nodes, and bridges can be
configured to add a duplicate id property in each message that is forwarded. If the target node of the bridge
crashes and then recovers, messages might be resent from the source node. By enabling duplicate detection any
duplicate messages will be filtered out and ignored on receipt at the target node.

This parameter has the same meaning as use- dupl i cat e- det ect i on on a bridge. For more information on du-
plicate detection, please see Chapter 35.

This parameter is optional and has a default value of t r ue.

e forward-when-no-consuners. This parameter determines whether messages will be distributed round robin
between other nodes of the cluster irrespective of whether there are matching or indeed any consumers on other
nodes.

142

Clusters

If thisis set to t r ue then each incoming message will be round robin'd even though the same queues on the oth-
er nodes of the cluster may have no consumers at all, or they may have consumers that have non matching mes-
sage filters (selectors). Note that JBoss Messaging will not forward messages to other nodes if there are no
gueues of the same name on the other nodes, even if this parameter isset to t r ue.

If thisis set to f al se then JBoss Messaging will only forward messages to other nodes of the cluster if the ad-
dress to which they are being forwarded has queues which have consumers, and if those consumers have mes-
sage filters (selectors) at least one of those selectors must match the message.

This parameter is optional, the default value isf al se.

* max- hops. When a cluster connection decides the set of nodes to which it might load balance a message, those
nodes do not have to be directly connected to it via a cluster connection. JBoss Messaging can be configured to
a so load balance messages to nodes which might be connected to it only indirectly with other JBoss Messaging
servers as intermediatesin achain.

This alows JBoss Messaging to be configured in more complex topologies and still provide message load bal-
ancing. We'll discuss this more later in this chapter.

The default value for this parameter is 1, which means messages are only load balanced to other JBoss Mes-
saging serves which are directly connected to this server. This parameter is optional.

e discovery-group-ref. This parameter determines which discovery group is used to obtain the list of other
serversin the cluster that this cluster connection will make connections to.

36.4. Client-Side Load balancing

With JBoss Messaging client-side connection load balancing, subsequent client connections created using a single
factory can be made to different nodes of the cluster. This allows connections to spread smoothly across the nodes
of acluster and not be "clumped" on any particular node.

The load balancing policy to be used by the client factory is configurable. JBoss Messaging provides two out-
of-the-box load balancing policies and you can also implement your own and use that.

The out-of-the-box policies are

* Round Robin. With this policy the first node is chosen randomly then each subsequent node is chosen sequen-
tially in the same order.

For example nodes might be chosen in theorder B, C, D, A,B,C,D,A,BorD,A,B,C,A,B,C,D,AorC, D,
A/ B,CD,A,B,CD,A.

« Random. With this policy each node is chosen randomly.

You can aso implement your own policy by implementing the interface
org. j boss. nessagi ng. core. client. Connecti onLoadBal anci ngPol i cy

Specifying which load balancing policy to use differs whether you are using JMS or the core API. If you don't spe-

143

Clusters

cify a policy then the default will be used which is

org. j boss. nessagi ng. core. client.inpl.RoundRobi nConnecti onLoadBal anci ngPol i cy.
If you'reusing JIMS, and you're using JNDI on the server to put your JM S connection factories into JNDI, then you

can specify the load balancing policy directly inthej bm j ms. xmi configuration file on the server asfollows:

<connection-factory nane="Connecti onFactory">
<di scovery-group-ref discovery-group-nane="ny-di scovery-group"/>
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
<connecti on-| oad- bal anci ng- pol i cy-cl ass- name>
org. j boss. nessagi ng. core. client.inpl.RandonConnecti onLoadBal anci ngPol i cy
</ connecti on-1| oad- bal anci ng- pol i cy- cl ass- nane>
</ connecti on-factory>

The above example would deploy a IMS connection factory that uses the random connection load balancing policy.

If you're using JMS but you're instantiating your connection factory directly on the client side then you can set the
load balancing policy using the setter on the JBossConnect i onFact ory before using it:

Connecti onFactory jnmsConnecti onFactory = new JBossConnecti onFactory(...);
j msConnect i onFact ory. set LoadBal anci ngPol i cyCl assNanme("com acne. MyLoadBal anci ngPol i cy");

If you're using the core API, you can set the load balancing policy directly on the d i ent Sessi onFact ory instance
you are using:

Cli ent Sessi onFactory factory = new Cient SessionFactorylnmpl (...);
factory. set LoadBal anci ngPol i cyCl assNanme("com acne. MyLoadBal anci ngPol i cy");

The set of servers over which the factory load balances can be determined in one of two ways:

» Specifying servers explicitly

» Using discovery.

36.5. Specifying Members of a Cluster Explicitly

Sometimes UDP is not enabled on a network so it's not possible to use UDP server discovery for clients to discover
thelist of serversin the cluster, or for serversto discover what other servers are in the cluster.

In this case, the list of serversin the cluster can be specified explicitly on each node and on the client side. Let's
look at how we do this:

36.5.1. Specify List of Servers on the Client Side

This differs depending on whether you're using IMS or the Core API

144

Clusters

36.5.1.1. Specifying List of Servers using JMS

If you're using IM S, and you're using the IM S Service to load your JIMS connection factory instances directly into
JNDI on the server, then you can specify the list of serversin the server side configuration filej bm j ms. xni . Let's
take alook at an example:

<connecti on-factory nanme="Connecti onFactory">
<connect or-ref connect or - name="ny- connect or 1"
backup- connect or - nane="ny- backup- connect or 1"/ >
<connect or-ref connect or - name="ny- connect or 2"
backup- connect or - nane="ny- backup- connect or 2"/ >
<connect or-ref connect or - name="ny- connect or 3"
backup- connect or - nane="ny- backup- connect or 3"/ >
<entries>
<entry nanme="Connecti onFactory"/>
</entries>
</ connecti on-factory>

The connecti on-f act ory €lement can contain zero or more connect or - r ef elements, each one of which specifies
aconnect or - name atribute and an optional backup- connect or - nane attribute. The connect or - name attribute ref-
erences a connector defined in j bm configuration. xm which will be used as a live connector. The backup-
connect or - name is optional, and if specified it also references a connector defined inj bm confi gurati on. xm . For
more information on connectors please see Chapter 14.

The connection factory thus maintains alist of [connector, backup connector] pairs, these pairs are then used by the
client connection load balancing policy on the client side when creating connections to the cluster.

If you're using JM S but you're not using JNDI then you can also specify the list of [connector, backup connector]
pairs directly when instantiating the JBossConnect i onFact or y, here's an example:

Li st <Pai r <Tr ansport Confi gurati on, TransportConfiguration>> serverList =
new ArraylLi st <Pai r <Transport Confi guration, TransportConfiguration>>();

server Li st. add(new Pai r <Transport Confi gurati on
Transport Confi gurati on>(liveTC0, backupTC0));
server Li st. add(new Pai r <Transport Confi gurati on
Transport Configurati on>(liveTCl, backupTCl));
server Li st. add(new Pai r <Transport Confi gurati on
Transport Configurati on>(liveTC2, backupTC2));
ConnectionFactory j nsConnectionFactory = new JBossConnecti onFactory(serverList);
Connection jnsConnectionl = jnsConnecti onFactory. createConnection();

Connection jnsConnection2 = jnsConnecti onFactory. createConnection();

In the above snippet we create a list of pairs of Transport Confi gurati on objects. Each Transport Confi gurati on
object contains knowledge of how to make a connection to a specific server.

A JBossConnect i onFact ory instance is then created passing the list of serversin the constructor. Any connections
subsequently created by this factory will create connections according to the client connection load balancing
policy applied to that list of servers.

36.5.1.2. Specifying List of Servers using the Core API

If you're using the core APl you can aso specify the list of servers directly when creating the d i ent Sessi onFact -

145

Clusters

ory instance. Here's an example:

Li st <Pai r <Tr ansport Confi gurati on, Transport Configurati on>> serverlList =
new ArraylLi st <Pai r <Transport Confi guration, TransportConfiguration>>();

serverLi st.add(new Pai r <Transport Confi gurati on,
Transport Configurati on>(liveTCO, backupTCO));

serverLi st.add(new Pai r<Transport Confi gurati on,
Transport Configuration>(liveTCl, backupTCl));

serverLi st.add(new Pai r <Transport Confi gurati on,
Transport Configurati on>(liveTC2, backupTC2));

C i ent Sessi onFactory factory = new O ient Sessi onFact oryl npl (serverList);
Cli ent Sessi on sesisonl = factory.created ientSession(...);

Cli ent Sessi on session2 = factory.created ientSession(...);

In the above snippet we create a list of pairs of Transport Confi gurati on objects. Each Transport Confi gurati on
object contains knowledge of how to make a connection to a specific server. For more information on this, please
see Chapter 14.

A dient Sessi onFact oryl npl instance is then created passing the list of servers in the constructor. Any sessions
subsequently created by this factory will create sessions according to the client connection load balancing policy
applied to that list of servers.

36.5.2. Specifying List of Servers to form a Cluster

Let's take alook at an example where each cluster connection is defined for a symmetric cluster, but we're not us-
ing discovery for each node to discover its neighbours, instead we'll configure each cluster connection to have ex-
plicit knowledge of all the other nodes in the cluster.

Here's an example cluster connection definition showing that:

<cl ust er - connecti ons>
<cl ust er-connecti on name="ny-explicit-cluster">
<addr ess>j ns</ addr ess>
<connect or-ref connector-nanme="ny-connect or1"
backup- connect or - nanme="ny- backup- connect or 1"/ >
<connect or-ref connector-nanme="ny-connect or 2"
backup- connect or - nanme="ny- backup- connect or 2"/ >
<connect or-ref connector-nanme="ny-connect or 3"
backup- connect or - nanme="ny- backup- connect or 3"/ >
</ cl ust er - connecti on>
</ cl ust er-connecti ons>

The cl ust er - connect i on element can contain zero or more connect or - r ef €lements, each one of which specifies
aconnect or - nane attribute and an optional backup- connect or - nane attribute. The connect or - nane attribute ref-
erences a connector defined in j bm confi guration. xm which will be used as a live connector. The backup-
connect or - nane isoptional, and if specified it aso references a connector defined inj bm confi gurati on. xm . For
more information on connectors please see Chapter 14.

36.6. Message Redistribution

Another important part of clustering is message redistribution. Earlier we learned how server side message load

146

Clusters

balancing round robins messages across the cluster. If f or war d- when- no- consuner s is false, then messages won't
be forwarded to nodes which don't have matching consumers, thisis great and ensures that messages don't arrive on
a queue which has no consumers to consume them, however there is a situation it doesn't solve: What happens if
the consumers on a queue close after the messages have been sent to the node? If there are no consumers on the
gueue the message won't get consumed and we have a starvation situation.

This is where message redistribution comes in. With message redistribution JBoss Messaging can be configured to
automatically redistribute messages from queues which have no consumers back to other nodes in the cluster
which do have matching consumers.

Message redistribution can be configured to kick in immediately after the last consumer on a queue is closed, or to
wait a configurable delay after the last consumer on a queue is closed before redistributing. By default message re-
distribution is disabled.

Message redistribution can be configured on a per address basis, by specifying the redistribution delay in the ad-
dress settings, for more information on configuring address settings, please see Chapter 24.

Here's an address settings snippet from j bm confi gurati on. xni showing how message redistribution is enabled
for aset of queues:

<addr ess-settings>
<address-setting match="jns. #">
<redi stribution-del ay>0</redi stributi on-del ay>
</ addr ess-setti ng>
</ addr ess-settings>

The above addr ess-set ti ngs block would set aredi stri buti on-del ay of 0 for any queue which is bound to an
address that starts with "jms.". All IM S queues and topic subscriptions are bound to addresses that start with "jms.",
so the above would enable instant (no delay) redistribution for all IMS queues and topic subscriptions.

The attribute mat ch can be an exact match or it can be a string that conforms to the JBoss Messaging wildcard syn-
tax (described in Chapter 11).

The element r edi st ri buti on- del ay defines the delay in milliseconds after the last consumer is closed on a queue
before redistributing messages from that queue to other nodes of the cluster which do have matching consumers. A
delay of zero means the messages will be immediately redistributed. A value of - 1 signifies that messages will nev-
er be redistributed. The default valueis- 1.

It often makes sense to introduce a delay before redistributing as it's a common case that a consumer closes but an-
other one quickly is created on the same queue, in such a case you probably don't want to redistribute immediately
since the new consumer will arrive shortly.

36.7. Cluster topologies

JBoss Messaging clusters can be connected together in many different topologies, let's consider the two most com-
mon ones here

36.7.1. Symmetric cluster

147

Clusters

A symmetric cluster is probably the most common cluster topology, and you'll be familiar with if you've had exper-
ience of JBoss Application Server clustering.

With a symmetric cluster every node in the cluster is connected to every other node in the cluster. In other words
every node in the cluster is no more than one hop away from every other node.

To form a symmetric cluster every node in the cluster defines a cluster connection with the attribute nax- hops set
to 1. Typically the cluster connection will use server discovery in order to know what other serversin the cluster it
should connect to, although it is possible to explicitly define each target server too in the cluster connection if, for
example, UDP is not available on your network.

With a symmetric cluster each node knows about al the queues that exist on all the other nodes and what con-
sumers they have. With this knowledge it can determine how to load balance and redistribute messages around the
nodes.

36.7.2. Chain cluster

With a chain cluster, each node in the cluster is not connected to every node in the cluster directly, instead the
nodes form a chain with a node on each end of the chain and all other nodes just connecting to the previous and
next nodes in the chain.

An example of this would be a three node chain consisting of nodes A, B and C. Node A is hosted in one network
and has many producer clients connected to it sending order messages. Due to corporate policy, the order consumer
clients need to be hosted in a different network, and that network is only accessible via a third network. In this
setup node B acts as a mediator with no producers or consumers on it. Any messages arriving on node A will be
forwarded to node B, which will in turn forward them to node C where they can get consumed. Node A does not
need to directly connect to C, but all the nodes can still act as a part of the cluster.

To set up a cluster in this way, node A would define a cluster connection that connects to node B, and node B
would define a cluster connection that connects to node C. In this case we only want cluster connectionsin one dir-
ection since we're only moving messages from node A->B->C and never from C->B->A.

For this topology we would set max- hops to 2. With avalue of 2 the knowledge of what queues and consumers that
exist on node C would be propagated from node C to node B to node A. Node A would then know to distribute
messages to node B when they arrive, even though node B has no consumers itself, it would know that a further
hop away is node C which does have consumers.

148

37

High Availability and Failover

We define high availability as the ability for the system to continue functioning after failure of one or more of the
servers. A part of high availability is failover which we define as the ability for client connections to migrate from
one server to another in event of server failure so client applications can continue to operate.

JBoss Messaging provides high availability by replicating servers in pairs. It also provides both 100% transparent
client failover and application-level client failover.

37.1. Server replication

JBoss Messaging allows pairs of servers to be linked together as live - backup pairs. In this release there isa single
backup server for each live server. Backup servers are not operational until failover occurs. In later releases we will
most likely support replication onto multiple backup servers.

When a live - backup pair is configured, JBoss Messaging ensures that the live server state is replicated to the
backup server. Replicated state includes session state, and also global state such as the set of queues and addresses
on the server.

When a client fails over from live to backup server, the backup server will already have the correct global and ses-
sion state, so the client will be able to resume its session(s) on the backup server asif nothing happened.

Replication is performed in an asynchronous fashion between live and backup server. Data is replicated one way in
a stream, and responses that the data has reached the backup is returned in another stream. By pipelining replica-
tions and responses to replications in separate streams allows replication throughput to be much higher than if we
synchronously replicated data and waited for a response serialy in an RPC manner before replicating the next piece
of data.

37.1.1. Configuring live-backup pairs

First, on the live server, inj bm confi gurati on. xm configure the live server with knowledge of its backup server.
This is done by specifying a backup- connect or -ref element. This element references a connector, also specified
on the live server which contains knowledge of how to connect to the backup server. Here's a snippet from j bm
configuration. xm showing alive server configured with a backup server:

<backup- connect or-ref connect or- nane="backup- connector"/>
<l-- Connectors -->

<connect or s>

<l-- This connector specifies howto connect to the backup server -->

149

High Availability and Failover

<connect or name="backup- connect or" >
<factory-cl ass>
org. j boss. nessagi ng.i ntegration.transports. netty. NettyConnector Factory
</factory-cl ass>
<param key="j bm renoting. netty. port" val ue="5445" type="Integer"/>
</ connect or >

</ connect or s>

Secondly, on the backup server, alsoinj bm confi guration. xn , the element backup must be set to true. |.e. :

<backup>t r ue</ backup>

37.1.2. Synchronization of live-backup pairs

In order for live - backup pairs to operate properly, they must be identical replicas. This means you cannot just use
any backup server that's previously been used for other purposes as a backup server, since it will have different data
in its persistent storage. If you try to do so you will receive an exception in the logs and the server will fail to start.

To create a backup server for a live server that's already been used for other purposes, it's necessary to copy the
dat a directory from the live server to the backup server. This means the backup server will have an identical per-
sistent store to the backup server.

Similarly when aclient fails over from alive server L to abackup server B, the server L becomes invalid since, from
that point on, the data on L and B may diverge. After such afailure, at the next available opportunity the B server
should be taken down, and its dat a directory copied back to the L server. Live and backup servers can then be re-
started. In this release of JBoss Messaging we do not provide any automatic facility for re-assigning a backup node
with alive node whileit is running.

For a backup server to function correctly it's also important that it has the same set of bridges, predefined queues,
cluster connections, broadcast groups and discovery groups as defined on the live node. The easiest way to ensure
thisisjust to copy the entire server side configuration from live to backup and just make the changes as specified in
the previous section.

37.1.3. Queue activation timeout

If alive server fails, as client connections failover from the live node to the backup, they do so at a rate determined
by the client, and it might be the case that some client connections never fail over.

Different client connections may have different consumers on the same queue(s). The queue on the backup will
wait for all its consumers to reattach before activating delivery on itself. If al connections have not reattached with
this timeout then the queue will activate regardless.

This param is defined in j bm confi guration. xm using the setting queue- acti vati on-ti meout . Its default value
is30000 milliseconds.

37.2. Automatic client failover

JBoss Messaging clients can be configured with knowledge of live and backup servers, so that in event of connec-

150

High Availability and Failover

tion failure of the client - live server connection, the client will detect this and reconnect its sessions to the backup
server. Because of server replication, then backup server will already have those sessions in the same state they
were left on the live server and the client will be able to reconnect them and resume them 100% transparently as if
nothing happened.

For automatic failover JBoss Messaging requires zero coding of special failover code on the client or server. This
differs from other messaging systems which intrusively require you to code special failover handling code. JBoss
Messaging automatic failover preserves all your normal JMS or core APl semantics and allows your client code to
continue 100% uninterrupted on event of connection failure and failover from alive to a backup server.

JBoss Messaging clients detect connection failure when it has not received packets from the server within the time
given by client-fail ure-check-period as explained in section Chapter 15. If the client does not receive datain
good time, it will assume the connection has failed and attempt failover.

JBoss Messaging clients can be configured with the list of live-backup server pairs in a number of different ways.
They can be configured explicitly or probably the most common way of doing thisisto use server discovery for the
client to automatically discover the list. For full details on how to configure clients please see Section 36.2.

Sometimes you want a client to failover onto a backup server even if the live server is just cleanly shutdown rather
than having crashed or the connection failed. To configure this you can set the property Fai | over onSer ver Shut -

down to false either on the JBossConnecti onFact ory if you're using JMS or in the j bmjns. xm file when you
define the connection factory, or if using core by setting the property directly on the d i ent Sessi onFact or yl npl

instance after creation. The default value for this property ist al se, this means that by default JBoss Messaging cli-
entswill not failover to a backup server if the live server is simply shutdown cleanly.

For afully functional example of automatic failover, please see Section 9.1.2.

37.3. Application-level client failover

In some cases you may not want automatic client failover, and prefer to handle any connection failure yourself, and
code your own manually reconnection logic in your own failure handler. We define this as application-level fail-
over, since the failover is handled at the user application level.

If al your clients use application-level failover then you do not need server replication on the server side, and
should disabled this. Server replication has some performance overhead and should be disabled if it is not required.
To disable server replication simply do not specify abackup- connect or element for each live server.

To implement application-level failover, if you're using IMS then you need to code an Excepti onLi st ener class
on the JIMS connection. The Except i onLi st ener will be called by JBoss Messaging in the event that connection
failure is detected. In your Excepti onLi st ener you would close your old JMS connections, potentially look up
new connection factory instances from JNDI and creating new connections. In this case you may well be using HA-
JINDI [http://www.jboss.org/community/wiki/JBossHAINDIImpl] to ensure that the new connection factory is
looked up from a different server.

For aworking example of application-level failover, please see Section 9.1.1.

If you are using the core API, then the procedure is very similar: you would code a Fai | ur eLi st ener On your core
d i ent Sessi on instances.

151

http://www.jboss.org/community/wiki/JBossHAJNDIImpl
http://www.jboss.org/community/wiki/JBossHAJNDIImpl

38

Libaio Native Libraries

JBoss Messaging distributes a native library, used as a bridge between JBoss Messaging and linux libaio.

l'i bai o is alibrary, developed as part of the linux kernel project. With 1'i bai o we submit writes to the operating
system where they are processed asynchronously. Some time later the OS will call our code back when they have
been processed.

These are the native libraries distributed by JBoss Messaging:

* libJBMLibAI0O32.s0 - x86 32 hits
e |ibJBMLibAIO64.50 - x86 64 bits
¢ |ibJBMLibAIO_ia64.s0 - Itanium 64 bits

When using libaio, JBoss Messaging will aways try loading these files aslong as they are on the library path.

38.1. Compiling the native libraries

Case you are using Linux on a platform other than x86_32, x86_64 or 1A64 (Itanium), (for example IBM POWER)
you may need to compile the native library, since we do not distribute binaries for those platforms with the release.

38.1.1. Install requirements

Note

At the moment the native layer is only available on Linux. If you are in a platform other than Linux the
native compilation will not work

The native library uses autoconf [http://en.wikipedia.org/wiki/Autoconf] what makes the compilation process easy,
however you need to install extra packages as a requirement for compilation:

e gcc- C Compiler
e gcc-c++ or g++ - Extension to gec with support for C++
e autoconf - Tool for automating native build process

* make- Plain old make

152

http://en.wikipedia.org/wiki/Autoconf

Libaio Native Libraries

e automake - Tool for automating make generation

e libtool - Toal for link editing native libraries

* libaio - library to disk asynchronous IO kernel functions

» libaio-dev - Compilation support for libaio

A full IDK installed with the environment variable JAVA_HOME set to its location

To perform this installation on RHEL or Fedora, you can simply type this at acommand line:

sudo yuminstall autonake |ibtool autoconf gcc-g++ gcc |libaio |ibaio-dev nake

Or on debian systems:

sudo apt-get install autonake |ibtool autoconf gcc-g++ gcc |ibaio |ibaio-dev nake

Note

You could find a dight variation of the package names depending on the version and linux distribution.
(for example gce-c++ on Fedora versus g++ on Debian systems)

38.1.2. Invoking the compilation

In the distribution, in the nat i ve- src directory, execute the shell script boot st rap. This script will invoke aut o-
make and make What will create all the make files and the native library.

soneUser @oneBox: / messagi ng-di stri buti on/nati ve-src$./bootstrap
checking for a BSD-conpatible install... /usr/bin/install -c
checki ng whet her build environment is sane... yes

checking for a thread-safe nkdir -p... /bin/nkdir -p

configure: creating ./config.status

config. status:
config. status:
config. status:
config. status:
config. status:
config. status:

creating Makefile

creating ./src/ Makefile
creating config.h

config.h is unchanged
executing depfiles commuands
executing |ibtool comrands

The produced library will be a ./ native-src/src/.1ibs/|ibJBMibAl O so. Simply move that file over bin on
the distribution or the place you have chosen on the library path.

If you want to perform changes on the JBoss Messaging libaio code, you could just call make directly at the nat -

i ve- src directory.

153

39

Thread management

This chapter describes how JBoss Messaging uses and pools threads and how you can manage them.

First we'll discuss how threads are managed and used on the server side, then we'll 1ook at the client side.

39.1. Server-Side Thread Management

Each JBoss Messaging Server maintains a single thread pool for general use, and a scheduled thread pool for
scheduled use. A Java scheduled thread pool cannot be configured to use a standard thread pool, otherwise we
could use asingle thread pool for both scheduled and non scheduled activity.

There are also a small humber of other places where threads are used directly, we'll discuss each in turn.

39.1.1. Server Scheduled Thread Pool

The server scheduled thread pooal is used for most activities on the server side that require running periodically or
with delays. It maps internally to aj ava. uti|. concurrent. Schedul edThr eadPool Execut or instance.

The maximum number of thread used by this pool is configure in j bm confi guration. xm with the schedul ed-
t hr ead- pool - max- si ze parameter. The default value is 5 threads. A small number of threads is usually sufficient
for this poal.

39.1.2. General Purpose Server Thread Pool

This general purpose thread pool is used for most asynchronous actions on the server side. It maps internally to a
java.util.concurrent. ThreadPool Execut or instance.

The maximum number of thread used by this pool is configure in j bm configuration. xm with the thread-
pool - max- si ze parameter.

If avalue of - 1 is used this signifies that the thread pool has no upper bound and new threads will be created on de-
mand if there are enough threads available to satisfy a request. If activity later subsides then threads are timed-out
and closed.

If avalue of n where nis a positive integer greater than zero is used this signifies that the thread pool is bounded. If
more requests come in and there are no free threads in the pool and the pool is full then requests will block until a
thread becomes available. It is recommended that a bounded thread pool is used with caution since it can lead to
dead-lock situationsif the upper bound is chosen to be too low.

The default value for t hr ead- pool - max- si ze iS- 1, i.e. the thread pool is unbounded.

154

Thread management

See the J2SE javadoc [http://java.sun.com/j2se/1.5.0/docs/api/javalutil/concurrent/ThreadPool Executor.html] for
more information on unbounded (cached), and bounded (fixed) thread pools.

39.1.3. Expiry Reaper Thread

A single thread is also used on the server side to scan for expired messages in queues. We cannot use either of the
thread pools for this since this thread needs to run at its own configurable priority.

For more information on configuring the reaper, please see Chapter 21.

39.1.4. Asynchronous IO

Asynchronous 1O has a thread pool for receiving and dispatching events out of the native layer. You will find it on
a thread dump with the prefix JBM-AlIO-poller-pool. JBoss Messaging uses one thread per opened file on the
journal (thereisusually one).

There is also a single thread used to invoke writes on libaio. We do that to avoid context switching on libaio what
would cause performance issues. You will find this thread on a thread dump with the prefix JBM-AIO-writer-pool.

39.2. Client-Side Thread Management

On the client side, JBoss Messaging maintains a single static scheduled thread pool and a single static general
thread pool for use by al clients using the same classloader in that JVM instance.

The static scheduled thread pool has a maximum size of 2 threads, and the general purpose thread pool has an un-
bounded maximum size.

If required JBoss Messaging can also be configured so that each d i ent Sessi onFact ory instance does not use
these static pools but instead maintains its own scheduled and general purpose pool. Any sessions created from that
C i ent Sessi onFact ory Will use those pools instead.

To configuread i ent Sessi onFact ory instance to use its own pools, ssimply use the appropriate setter methods im-
mediately after creation, for example:

Cli ent Sessi onFactory nmyFactory = new O ient Sessi onFactory(...);
myFact ory. set Used obal Pool s(fal se);

nyFact ory. set Schedul edThr eadPool MaxSi ze(10) ;

nyFact ory. set Thr eadPool MaxSi ze(-1);

If you're using the IMS AP, you can set the same parameters directly on the JBossConnect i onFact ory instance,
for example:

JBossConnecti onFactory myFactory = new JBossConnecti onFactory(...);
nyFact ory. set Used obal Pool s(fal se);

myFact ory. set Schedul edThr eadPool MaxSi ze(10) ;

nyFact ory. set Thr eadPool MaxSi ze(-1);

If you're using JNDI to instantiate JBossConnect i onFact ory instances, you can aso set these parameters in the
jbmjms. xm filewhereyou describe your connection factory, for example:

155

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html

Thread management

<connecti on-factory nanme="Connecti onFactory">
<connector-ref connector-nanme="netty"/>
<entries>
<entry name="Connecti onFactory"/>
<entry nanme="XAConnecti onFactory"/>
</entries>
<use- gl obal - pool s>f al se</ use- gl obal - pool s>
<schedul ed-t hr ead- pool - max- si ze>10</ schedul ed- t hr ead- pool - max- si ze>
<t hr ead- pool - max- si ze>- 1</t hr ead- pool - nex- si ze>
</ connecti on-factory>

156

40

Logging

JBM uses standard JDK logging [http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/], (a.k.a Java-Util-Logging:
JUL), for al its logging. This means we have no dependencies on any third party logging framework. Users can
provide their own logging handler to use or alternatively use the log4j handler supplied by JBoss Messaging.

The handlers are configured via the JUL | oggi ng. properti es file. This default location for this file is under the
lib directory found in the Java home directory but it can be overidden by setting the
java.util.logging.config.file System property to point to the appropriate logging.properties file. The stan-
dalone JBM server does this and the | oggi ng. properti es file can be found under the confi g directory of the JBM
installation.

By default the standalone server is configured to use the standard console handler and a file handler that logs to
bi n/ | ogs/ nessagi ng. | og.

Because some of the third party components used to bootstrap JBoss Messaging, i.e. the Microcontainer, use the
JBoss Logging framework we have supplied a plugin class that redirects this to the JUL logger. Thisis set viaa
system property,

Dor g. j boss. | oggi ng. Logger . pl ugi nCl ass=or g. j boss. nmessagi ng. i nt egrati on. | oggi ng. JIBM_ogger Pl ugi n.
This is only needed when starting the standalone server and is set in the run script. Thisis not a problem if you are
embedding JBoss Messaging in your own code as the Microcontainer won't be being used.

If you want configure your client's logging, make sure you provide a | oggi ng. properties file and set the
java.util.logging.config.file property on client startup

40.1. Log4j Configuration

JBoss Messaging supplies a JUL Log4j handler that can be used instead of the defaults. To use this simply edit the
logging.propertiesfile as such:

handl er s=or g. j boss. nessagi ng. i nt egrati on. | oggi ng. Log4j Logger Handl er

Y ou will also need to download the Log4j jars and place them inthe | i b directory and aso provide alog4j config-
uration and place it on the appropriate config directory, i.e. confi g/ conmon.

40.2. Logging With The JBoss Application Server

When JBoss Messaging is deployed within the Application Server then it will still use JUL however the logging is
redirected to the default JBoss logger. For more information on this refer to the JBoss documentation.

157

http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/

41

Embedding JBoss Messaging

JBoss Messaging is designed as set of simple Plain Old Java Objects (POJOs). This means JBoss Messaging can be
instantiated and run in any dependency injection framework such as JBoss Microcontainer, Spring or Google
Guice. It also means that if you have an application that could use messaging functionality internally, then it can
directly instantiate JBoss Messaging clients and servers in its own application code to perform that functionality.
We call this embedding JBoss Messaging.

Examples of applications that might want to do this include any application that needs very high performance,
transactional, persistent messaging but doesn't want the hassle of writing it all from scratch.

Embedding JBM can be done in very few easy steps. Instantiate the configuration object, instantiate the server,
start it, and you have a JBoss Messaging running in your virtual machine. It's as simple and easy asthat.

41.1. POJO instantiation

Y ou can follow this step-by-step guide:

Create the configuration object - this contains configuration information for a JBoss Messaging server. If you want
to configure it from afile on the classpath, use Fi | eConf i gur at i onl npl

i mport org.jboss. nessagi ng. core. config. Configuration;
i mport org.jboss. nessagi ng. core.config.inpl.FileConfiguration;

Configuration config = new Fil eConfiguration();
config.setConfigurationUl (url ToYourconfigfile);
config.start();

If you don't need to support a configuration file, just use Confi gurati onl npl and change the config parameters ac-
cordingly, such as adding acceptors.

The acceptors are configured through Conf i gur ati onl npl . Just add the Net t yAccept or Fact ory on the transports
the same way you would through the main configuration file.

i mport org.jboss. nessagi ng. core. config. Configuration;
i mport org.jboss. nessagi ng. core.config.inpl.Configurationlnpl;

Configuration config = new Configurationlnpl();
HashSet <Transport Confi gurati on> transports = new HashSet <Transport Confi gurati on>();

transports. add(new Transport Confi gurati on(NettyAcceptorFactory. cl ass. getNane()));
transports. add(new Transport Confi guration(lnVMAccept or Factory. cl ass. get Nanme()))

158

Embedding JBoss Messaging

config. set AcceptorConfigurations(transports);

You need to instantiate and start JBoss Messaging server. The class
org.j boss. messagi ng. core. server Messagi ng has a few static methods for creating servers with common config-
urations.

i mport org.jboss. nessagi ng. core. server. Messagi ng;
i mport org.jboss. nessagi ng. core. server. Messagi ngSer ver;

Messagi ngServer server = Messagi ng. newiessagi ngServer (confi g);

server.start();

Y ou also have the option of instantiating Messagi ngSer ver | npl directly:

Messagi ngServer server =
new Messagi ngServer | npl (config);
server.start();

41.2. Dependency Frameworks

Y ou may also choose to use a dependency injection framework such as JBoss Micro Container™ or Spring Frame-
work™.

JBoss Messaging standalone uses JBoss Micro Container as the injection framework. JBMBoot st r apSer ver and
j bm j boss- beans. xni which are part of the JBoss Messaging distribution provide a very complete implementation
of what's needed to bootstrap the server using JBoss Micro Container.

When using JBoss Micro Container, you need to provide a XML declaring the Messagi ngSer ver and Conf i gur a-
ti on object, you can also inject a security manager and a MBean server if you want, but those are optional .

A very basic XML Bean declaration for the JBoss Micro Container would be:

<?xm version="1.0" encodi ng="UTF-8""?>
<depl oyment xm ns="urn:j boss: bean-depl oyer: 2. 0">

<I-- The core configuration -->
<bean name="Confi gurati on"

cl ass="org.j boss. nessagi ng. core. config.inpl.FileConfiguration">
</ bean>

<l-- The core server -->
<bean nane="Messagi ngServer"
cl ass="org.j boss. nessagi ng. core. server.inpl. Messagi ngServer| npl ">
<constructor >
<par anet er >
<i nj ect bean="Configuration"/>
</ par anet er >
</ constructor>
</ bean>
</ depl oynment >

159

Embedding JBoss Messaging

JBMBoot st rapSer ver provides an easy encapsulation of JBoss Micro Container.

JBMBoot st rapServer bootStrap =
new JBMBoot st rapServer (new String[] {"jbmjboss-beans.xm "});
boot Strap. run();

41.3. Connecting to the Embedded JBoss Messaging

To connect clients to JBoss Messaging you just create the factories as normal:

41.3.1. Core API

If using the core AP, just create the d i ent Sessi onFact ory and use the regular core API.

Client Sessi onFactory nettyFactory = new CientSessionFactoryl npl (

new Transport Confi gurati on(
I nVMConnect or Fact ory. cl ass. get Nane()));

Cli ent Sessi on session = factory. createSession();

sessi on. cr eat eQueue(" exanpl e", "exanple", true);

Cli ent Producer producer = session.createProducer("exanple");

Cli ent Message nessage = session.created ient Message(true);

nmessage. get Body().witeString("Hello");

producer. send(nessage) ;

session.start();

Cl i ent Consuner consunmer = session. creat eConsumer ("exanpl e");

d i ent Message nsgRecei ved = consuner.receive();

n

System out . println("nessage = + nsgRecei ved. get Body().readString());

session. cl ose();

41.3.2. IMS API

Connection on an Embedded JBoss Messaging through IMS is also simple. Just instantiate JBossConnect i onFact -
ory directly. The following example illustrates that.

JBossConnecti onFactory cf =
new JBossConnecti onFact or y(
new Transport Confi gurati on(l nVMConnect or Fact ory. cl ass. get Nane()));
Connection conn = cf.createConnection();
conn.start();

Sessi on sess = conn. creat eSession(true, Session. SESSI ON TRANSACTED) ;

MessageProducer prod = sess. creat eProducer (queue);

160

Embedding JBoss Messaging

Text Message nsg = sess. creat eText Message("Hel |l o!");
prod. send(nmsg) ;

sess.conm t();

MessageConsumer consumer = sess. creat eConsuner (queue);
Text Message txtnsg = (Text Message) consuner. recei ve();
Systemout.printin("Msg =" + txtnsg.getText());
sess.comit();

conn. cl ose();

41.4. IMS Embedding Example

Please see Section 9.2.1 for an example which shows how to setup and run JBoss M essaging embedded with IMS.

161

42

Intercepting Operations

JBoss Messaging supports interceptors to intercept packets entering and leaving the server. Any supplied intercept-
ors would be caled for any packet entering or leaving the server, this allows custom code to be executed, e.g. for
auditing packets, filtering or other reasons. Interceptors can change the packets they intercept.

42.1. Implementing The Interceptors

A interceptor must implement the | nt er cept or i nt er f ace:

package org.j boss. messagi ng. core.renoting;

public interface Interceptor

{

bool ean i ntercept (Packet packet, RenotingConnection connecti on)
throws Messagi ngExcepti on;

The returned boolean value isimportant:

e if true isreturned, the process continues normally

» if fal se is returned, the process is aborted, no other interceptors will be called and the packet will not be
handled by the server at all.

42.2. Configuring The Interceptors

Theinterceptors are configured inj bm conf i gurati on. xni :

<renoti ng-interceptors>

<cl ass- nane>or g. j boss. j ns. exanpl e. Logi nl nt er cept or </ cl ass- nane>

<cl ass- nane>or g. j boss. j ns. exanpl e. Addi ti onal Propertyl nt erceptor</cl ass- nanme>
</renoting-interceptors>

The interceptors classes (and their dependencies) must be added to the server classpath to be properly instantiated
and called.

42.3. Example

162

Intercepting Operations

See Section 9.1.18 for an example which shows how to use interceptors to add properties to a message on the serv-
er.

163

43

Interoperability

43.1. Stomp and StompConnect

Stomp [http://stomp.codehaus.org/] is a wire protocol that allows Stomp clients to communicate with Stomp
Brokers. StompConnect [http://stomp.codehaus.org/StompConnect] is a server that can act as a Stomp broker and
proxy the Stomp protocol to the standard IMS API. Consequently, using StompConnect it is possible to turn JBM
into a Stomp Broker and use any of the available stomp clients. These include clients written in C, C++, ¢# and .net
etc.

To run StompConnect first start the JBoss Messaging server and make sure that it is using JNDI.
Stomp requiresthefilej ndi . properti es to be available on the classpath. This should look something like:

java.nam ng. factory.initial=org.jnp.interfaces. Nanm ngCont ext Fact ory
j ava. nam ng. provi der. url =jnp://l ocal host: 1099
java. nam ng. factory. url . pkgs=org.jboss. nam ng: org. jnp.interfaces

Make sure this file is in the classpath along with the StompConnect jar and the JBoss Messaging jars and simply
runj ava org. codehaus. st onp.j ns. Mai n.

JBoss Messaging will shortly be implementing the Stomp protocol directly, so you won't have to use StompCon-
nect to be able to use JBoss Messaging with Stomp clients.

43.2. AMQP

AMQP support coming soon!

43.3. REST

REST support coming soon!

164

http://stomp.codehaus.org/
http://stomp.codehaus.org/StompConnect

44

Performance Tuning

In this chapter we'll discuss how to tune JBoss Messaging for optimum performance.

44.1. Tuning the journal

Minimum number of journal files. Setj ournal - mi n-fil es to anumber of filesthat would fit your average sus-
tainable rate. If you see new files being created on the journal data directory too often, i.e. lots of datais being
persisted, you need to increase the minimal number of files, this way the journal would reuse more files instead
of creating new datafiles.

Journal file size. The journa file size should be aligned to the capacity of a cylinder on the disk. The default
value 10MiB should be enough on most systems.

Use AlO journal. If using Linux, try to keep your journal type as AlO.

journal - ai o-flush-on-sync. If you don't have many producers in your system you may consider setting
journal-aio-flush-on-sync to true. JBoss Messaging by default is optimized by the case where you have many
producers. We try to combine multiple writes in a single OS operation. However if that's not your case setting
this option to true will give you a performance boost.

On the other hand when you have multiple producers, keeping j our nal - ai o- f | ush- on- sync set to false. This
will make your system flush multiple syncsin asingle OS call making your system scale much better.

44.2. Tuning JMS

There are afew areas where some tweaks can be done if you are using the IMS API

Disable message id. Use the set Di sabl eMessagel D() method on the MessagePr oducer class to disable mes-
sage ids if you don't need them. This decreases the size of the message and also avoids the overhead of creating
auniqueID.

Disable message timestamp. Use the set Di sabl eMessageTi neSt anp() method on the MessagePr oducer class
to disable message timestamps if you don't need them. Again this makes the message smaller.

Avoid Obj ect Message. bj ect Message IS convenient but it comes at a cost. The body of a vj ect Message uses
Java serialization to serialize it to bytes. The Java serialized form of even small objectsis very verbose so takes
up alot of space on the wire, aso Java seriaization is slow compared to customer marshalling techniques. Only
use vj ect Message if you really can't use one of the other message types, i.e. if you really don't know the type
of the payload until run-time.

165

Performance Tuning

Avoid AUTO ACKNOALEDGE. AUTO_ACKNOW.EDGE mode requires an acknowledgement to be sent from the server
for each message received on the client, this means more traffic on the network. If you can, use
DUPS_OK_ACKNOW.EDGE Or UsSe CLI ENT_ACKNOW.EDGE or a transacted session and batch up many acknowledge-
ments with one acknowledge/commit.

Avoid persistent messages. By default IMS messages are persistent. If you don't really need persistent mes-
sages then set them to be non persistent. Persistent messages incur a lot more overhead in persisting them to
storage.

44.3. Other Tunings

There are various other places in JBoss M essaging where we can perform some tuning:

Use Asynchronous Send Acknowledgements. If you need to send persistent messages non transactionally and
you need a guarantee that they have reached the server by the time the call to send() returns, don't set persistent
messages to be sent blocking, instead use asynchronous send acknowledgements to get your acknowledgements
of send back in a separate stream, see Chapter 19 for more information on this.

Use pre-acknowledge mode. With pre-acknowledge mode, messages are acknowledged bef or e they are sent to
the client. This reduces the amount of acknowledgment traffic on the wire. For more information on this, see
Chapter 28.

Disable security. You may get a small performance boost by disabling security by setting the security-en-
abl ed parameter tofal se inj bm configuration. xm .

Disable persistence. If you don't need message persistence, turn it off altogether by setting per si st ence- en-
abl ed tofalseinj bm configuration. xn .

Sync transactions lazily. Setting j our nal - sync-transacti onal t0fal se injbmconfiguration.xm can give
you better transactional persistent performance at the expense of some possibility of loss of transactions on fail-
ure. See Chapter 19 for more information.

Use the core APl not IMS. Using the IMS APl you will have slightly lower performance than using the core
AP, since all IMS operations need to be trandated into core operations before the server can handle them.

44.4. Tuning Transport Settings

Enable Nagle's agorithm [http://en.wikipedia.org/wiki/Nagle's_agorithm]. If you are sending many small mes-
sages, such that more than one can fit in a single IP packet thus providing better performance. This is done by
setting j bm renoti ng. netty. t cpnodel ay to false with the Netty transports. See Chapter 14 for more informa-
tion on this.

TCP buffer sizes. If you have a fast network and fast machines you may get a performance boost by increasing
the TCP send and receive buffer sizes. See the Chapter 14 for more information on this.

Increase limit on file handles on the server. If you expect alot of concurrent connections on your servers, or if
clients are rapidly opening and closing connections, you should make sure the user running the server has per-

166

http://en.wikipedia.org/wiki/Nagle's_algorithm

Performance Tuning

mission to create sufficient file handles.

This varies from operating system to operating system. On Linux systems you can increase the number of al-
lowable open file handlesin thefile/ et c/ security/linits. conf eg. add thelines

serveruser sof t nofile 20000
serveruser hard nofile 20000

Thiswould allow up to 20000 file handles to be open by the user ser ver user.

44.5. Tuning the VM

We highly recommend you use the latest Java 6 JVM, especidly in the area of networking many improvements
have been made since Java 5. We test internally using the Sun JVM, so some of these tunings won't apply to JDKs
from other providers (e.g. IBM or JRockit)

e Garbage collection. For smooth server operation we recommend using a parallel garbage collection agorithm,
e.g. using the VM argument - XX: +UsePar al | el GCon Sun JDKs.

* Memory settings. Give as much memory as you can to the server. JBoss Messaging can run in low memory by
using paging (described in Chapter 23) but if it can run with all queuesin RAM this will improve performance.
The amount of memory you require will depend on the size and number of your queues and the size and num-
ber of your messages. Use the VM arguments - Xns and - Xnx to set server available RAM. We recommend set-
ting them to the same high value.

e Aggressive options. Different JVMs provide different sets of VM tuning parameters, for the Sun Hotspot JVM
the full list of options is available here [http://java.sun.com/javase/technol ogies/hotspot/vmoptions.jsp]. We re-
commend at least using - xXX: +Aggr essi veQpts and - XX: +UseFast Accessor Met hods. You may get some
mileage with the other tuning parameters depending on your OS platform and application usage patterns.

44.6. Avoiding Anti-Patterns

* Re-use connections / sessions / consumers / producers. Probably the most common messaging anti-pattern we
see is users who create a new connection/session/producer for every message they send or every message they
consume. This is a poor use of resources. These objects take time to create and may involve several network
round trips. Always re-use them.

Note

Some popular libraries such as the Spring JIMS Template are known to use these anti-patterns. If you're us-
ing Spring JIMS Template and you're getting poor performance you know why. Don't blame JBoss Mes-

saging!

* Avoid fat messages. Verbose formats such as XML take up alot of space on the wire and performance will suf-
fer asresult. Avoid XML in message bodiesif you can.

167

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp

Performance Tuning

Avoid many selectors on a queue. Another common anti-pattern is a single queue which has many consumers,
each one with a distinct message selector. As messages come into the queue they will typically only match one
of the consumers. This does not normally give good performance since as new consumers are added the entire
gueue has to be scanned for matching messages.

This anti-pattern can normally be avoided by instead using a topic with many durable subscriptions, each sub-
scription defines a message selector. With topic subscriptions the selector expression is evaluated by JBoss
Messaging before the message goes into the subscription, so no scanning is involved.

Don't create temporary queues for each request. This common anti-pattern involves the temporary queue re-
guest-response pattern. With the temporary queue request-response pattern a message is sent to a target and a
reply-to header is set with the address of alocal temporary queue. When the recipient receives the message they
process it then send back a response to the address specified in the reply-to. A common mistake made with this
pattern is to create a new temporary gueue on each message sent. This will drastically reduce performance. In-
stead the temporary queue should be re-used for many requests.

168

45

Configuration Reference

This section is a quick index for looking up configuration. Click on the element name to go to the specific chapter.

45.1. Server Configuration

45.1.1. jbm-configuration.xml

Thisisthe main core server configuration file.

Table 45.1. Server Configuration

Element Name

backup

Element Type

Boolean

Description

true means that this serv-
er is a backup to another
node in the cluster

Default
false

backup-connector-ref

String

the name of the remoting
connector to connect to
the backup node

bindings-directory

clustered

connection-ttl-override

create-bindings-dir

create-journal-dir

String

Boolean

Long

Boolean

Boolean

the directory to store the
persisted bindingsto

true means that the server
is clustered

if set, this will override
how long (in ms) to keep
a connection dive
without receiving a ping.

true means that the server
will create the bindings
directory on start up

true means that the journ-
al directory will be cre-
ated

data/bindings

fase

-1

true

true

file-deployment-enabled

Boolean

true means that the server
will load configuration

true

169

Configuration Reference

Element Name

Element Type

Description

from the configuration
files

Default

global-page-size

id-cache-size

journal-aio-buffer-size

journal-
aio-buffer-timeout

Long

Integer

Long

Long

the standard size (in
bytes) of a pagefile
JBoss Messaging will
only read messages when
there is enough space to
read at |east one pagefile,
determined by this value.

the size of the cache for
pre creating message id's

The size of the internd
buffer on AlO.

The timeout (in nano-
seconds) used to flush in-
ternal buffers.

10* 1024 * 1024

2000

128 KiB

20000

journal-aio-flush-on-sync

journal-com-
pact-min-files

Boolean

I nteger

If true, transactions will
ignore timeouts and be
persisted immediately

The minimal number of
data files before we can
start compacting

Fase

10

journal-com-
pact-percentage

journal-directory

journal-file-size

Integer

String

Long

The percentage of live
data on which we con-
sider compacting the
journal

the directory to store the
journal filesin

the size (in bytes) of each
journal file

30

dataljournal

128 * 1024

journal-max-aio

journa-min-files

Integer

Integer

journal-sync-transactional | Boolean

the maximum number of
write requests that can be
in the AlO queue at any
onetime

how many journal files to
pre-create

if true wait for transaction
data to be synchronized
to the journa before re-
turning response to client

500

true

170

Configuration Reference

Element Name Element Type Description Default
journal- Boolean if true wait for non trans- false
sync-non-transactional action data to be synced
to the journa before re-
turning response to client.
journal-type ASYNCIOINIO thetype of journal touse ASYNCIO
jmx-management-enabled Boolean true means that the man- true
agement API is available
viaJMX
large-messages-directory String the directory to store data/largemessages
large messages
management-address String the name of the manage- jbm.management
ment address to send
management messages to
management-cluster-user | String the user used to for rep- JBM.MANAGEMENT.A
licating management op- DMIN.USER
erations between
clustered nodes
management- String the password used to for CHANGE ME!!
cluster-password replicating management
operations between
clustered nodes
management-notifica String the name of the address jbm.notifications
tion-address that consumers bind to re-
ceive management noti-
fications
management-re- Long how long (in ms) to wait 5000
quest-timeout for a reply to a manage-
ment request
message-counter-enabled Boolean true means that message fase
counters are enabled
message- Integer how many days to keep 10
counter-max-day-history message counter history
message- Long the sample period (in ms) 10000
counter-sample-period to use for message coun-
ters
message-ex- Long how often (in ms) to scan 30000
piry-scan-period for expired messages
message-ex- Integer the priority of the thread 3

piry-thread-priority

expiring messages

171

Configuration Reference

Element Name Element Type Description Default
paging-directory String the directory to store data/paging
paged messagesin
paging- Long JBoss Messaging enters -1
max-global-size-bytes into global page mode as
soon as the total memory
consumed by messages
hits this value (in bytes)
persist-deliv- Boolean true means that the deliv- false
ery-count-before-delivery ery count is persisted be-
fore deivery. Fdse
means that this only hap-
pens after a message has
been cancelled.
persistence-enabled Boolean true means that the server true
will use the file based
journal for persistence.
persist-id-cache Boolean true means that id's are true
persisted to the journal
gueue-activation-timeout Long after failover occurs, this 30000
timeout specifies how
long (in ms) to wait for
consumers to re-attach
before starting delivery
scheduled- Integer the number of threads 5
thread-pool-max-size that the main scheduled
thread pool has.
security-enabled Boolean true means that security is true
enabled
security-invalida- Long how long (in ms) to wait 10000
tion-interval before invalidating the se-
curity cache
thread-pool-max-size Integer the number of threads -1
that the main thread pool
has. -1 means no limit
transaction-timeout Long how long (in ms) beforea 60000
transaction can be re-
moved from the resource
manager after create time
transaction- Long how often (in ms) to scan 1000
timeout-scan-period for timeout transactions
wild- Boolean true means that the server true

172

Configuration Reference

Element Name Element Type Description Default
card-routing-enabled supports wild card rout-
ing
acceptors Acceptor a list of remoting accept-
orsto create
broadcast-groups BroadcastGroup a list of broadcast groups
to create
connectors Connector a list of remoting con-
nectors configurations to
Create
discovery-groups DiscoveryGroup alist of discovery groups
to create
diverts Divert alist of divertsto use
divert.name (attribute) String a unique name for the di-
vert - mandatory
divert.routing-name String the routing name for the
divert - mandatory
divert.address String the address this divert
will divert from - mandat-
ory
divert.forwarding-address = String the forwarding address
for the divert - mandatory
divert.exclusive Boolean isthisdivert exclusive? fase
divert.filter String an optional core filter ex- null
pression
di- String an optional class name of
vert.transformer-class-na atransformer
me
gueues Queue a list of pre configured
queues to create
gueues.name (attribute) | String unique name of this
queue
queues.address String address for this queue -
mandatory
gueues.filter String optional core filter ex- null
pression for this queue
gueues.durable Boolean isthis queue durable? true
bridges Bridge alist of bridgesto create

Configuration Reference

Element Name Element Type Description Default
bridges.name (attribute) | String unique name for this
bridge
bridges.queue-name String name of queue that this
bridge consumes from -
mandatory
bridges.forwarding-addre = String address to forward to. If null
ss omitted original destina
tionisused
bridgesfilter String optional core filter ex- null
pression
bridges.transformer-class- String optional name of trans- null
name former class
bridges.retry-interval Long period (in ms) between 2000 ms
successive retries
bridges.retry-interval-mul | Double multiplier to apply to suc- 1.0
tiplier cessiveretry intervals
bridges.reconnect-attempt | Integer maximum number of -1
s retry attempts, -1 signi-
fiesinfinite
bridges.failover-on-server Boolean should failover be promp- false
-shutdown ted if target server is
cleanly shutdown?
bridges.use-duplicate-det = Boolean should duplicate detec- true
ection tion headers be inserted
in forwarded messages?
bridges.discovery-group-r = String name of discovery group null
ef used by this bridge
bridges.connector-ref.con | String name of connector to use
nector-name (attribute) for live connection
bridges.connector-ref.bac | String optiona name of connect- null

kup-connector-name
(attribute)

or to use for backup con-
nection

cluster-connections

cluster-connections.name
(attribute)

cluster-connec-
tions.address

ClusterConnection

String

String

a list of cluster connec-
tions

unique name for this
cluster connection

name of address this
cluster connection applies
to

174

Configuration Reference

Element Name Element Type Description Default
cluster-connec- Boolean should messages be load false
tions.forward-when-no-co balanced if there are no
nsumers matching consumers on
target?
cluster-connec- Integer maximum number of 1
tions.max-hops hops cluster topology is
propagated
cluster-connec- Long period (in ms) between 2000
tions.retry-interval successive retries
cluster-connec- Boolean should duplicate detec- true
tions.use-duplicate-detect tion headers be inserted
ion in forwarded messages?
cluster-connec- String name of discovery group null
tions.discovery-group-ref used by this bridge
cluster-connec- String name of connector to use
tions.connector-ref.conne for live connection
ctor-name (attribute)
cluster-connec- String optional name of connect- null
tions.connector-ref.backu or to use for backup con-
p-connector-name nection
(attribute)
security-settings Security Setting alist of security settings
security-settings.match String the string to use for
(attribute) matching security against
an address
security-set- Security Permission a permision to add to the
tings.permission address
security-set- Permission Type the type of permission
tings.permission.type
(attribute)
Ssecurity-set- Roles a commearseparated list of
tings.permission.roles roles to apply the permis-
(attribute) sionto
address-settings AddressSetting alist of address settings
address-set- String the address to send dead
tings.dead-|etter-address messages too
address-set- Integer how many times to at- 10

tings.max-delivery-attem
pts

tempt to deliver a mes
sage before sending to

175

Configuration Reference

Element Name Element Type Description Default

dead letter address
address-set- String the address to send ex-
tings.expiry-address pired messages too
address-set- Long the time (in ms) to wait 0
tings.redelivery-delay before redelivering a can-

celled message.
address-set- boolean whether to treat the queue false
tings.last-value-queue as alast value queue
address-set- String the class to use for dis- RoundRobinDistributor
tings.distribution-policy-c tributing messages to a
lass consumer
address-set- Long the page size (in bytes) to 10 * 1024 * 1024
tings.page-size-bytes use for an address
address-set- Long the maximum size (in -1
tings.max-size-bytes bytes) to use in paging for

an address
address-set- Long how long (in ms) to wait -1

tings.redistribution-delay

45.1.2. jbm-jms.xml

after the last consumer is
closed on a queue before
redistributing messages.

This is the configuration file used by the server side IMS service to load JIMS Queues, Topics and Connection

Factories.

Table45.2. IMS Server Configuration

Element Name

connection-factory

connection-fact-
ory.auto-group

connection-fact-
ory.block-on-acknowledg
e

connection-fact-

Element Type

ConnectionFactory

Boolean

Boolean

Boolean

Description

a list of connection
factories to create and
add to INDI

whether or not message
grouping is automatically
used

whether or not messages
are acknowledged syn-
chronously

whether or not non per-

Default

false

fase

fase

176

Configuration Reference

Element Name Element Type Description Default
ory.block-on-non-persiste sistent messages are sent
nt-send synchronously
connection-fact- Boolean whether or not persistent false
ory.block-on-persistent-se messages are sent syn-
nd chronously
connection-fact- Long the timeout (in ms) for re- 30000
ory.call-timeout mote calls
connection-fact- Long the period (in ms) after 5000
ory.client-failure-check-p which the client will con-
eriod sider the connection
failed after not receiving
packets from the server
connection-fact- String the pre-configured client null
ory.client-id ID for the connection
factory
connection-fact- String the name of the load bal- org.jboss.messaging.core.
ory.connection-load-bala ancing class cli-
ncing-policy-class-name ent.impl.RoundRobinCon
nectionL oadBalancing-
Policy
connection-fact- Long the time to live (in ms) 5* 60000
ory.connection-ttl for connections
connection-fact- Integer the fastest rate a con- -1
ory.consumer-max-rate sumer may consume mes-
sages per second
connection-fact- Integer the window size (in 1024 * 1024
ory.consumer-window-siz bytes) for consumer flow
e control
connection-fact- Long the initial time to wait (in ' 2000
ory.discovery-initial-wait ms) for discovery groups
-timeout to wait for broadcasts
connection-fact- Integer the batch size (in bytes) 1024 * 1024
ory.dups-ok-batch-size between acknowledge-
ments when using
DUPS_OK_ACKNOWL
EDGE mode
connection-fact- Boolean whether or not to failover false
ory.failover-on-server-sh on server shutdown
utdown
connection-fact- Integer the maximum number of 8

ory. max-connections

connections per factory

177

Configuration Reference

Element Name Element Type Description Default
connection-fact- Integer the size (in bytes) before 100 * 1024
ory.min-large-message-si a message is treated as
ze large
connection-fact- Boolean whether messages are pre false
ory.pre-acknowledge acknowledged by the

server before sending
connection-fact- Integer the maximum rate of -1
ory.producer-max-rate messages per second that

can be sent
connection-fact- Integer the window size (in 1024 * 1024
ory.producer-window-siz bytes) for sending mes-
e sages
connection-fact- Integer maximum number of O
ory.reconnect-attempts retry attempts, -1 signi-

fiesinfinite
connection-fact- Long the time (in ms) to retry a 2000
ory.retry-interval connection after failing
connection-fact- Double multiplier to apply to suc- 1d
ory.retry-interval-multipli cessiveretry intervals
er
connection-fact- Integer the size of the scheduled 2
ory.schedul ed-thread-poo thread pool
I-max-size
connection-fact- Integer the size of the thread pool -1
ory.thread-pool-max-size
connection-fact- Integer the batch size (in bytes) 1024 * 1024
ory.transaction-batch-size between acknowledge-

ments when using atrans-

actional session
connection-fact- Boolean whether or not to use a true
ory.use-global-pools global thread pool for

threads
gueue Queue a queue to create and add

to INDI
gueue.name (attribute) String unique name of the queue
gueue.entry String context where the queue

will be bound in JNDI

(there can be many)
gueue.durable Boolean is the queue durable? true

178

Configuration Reference

Element Name Element Type Description Default
queuefilter String optional filter expression

for the queue
topic Topic a topic to create and add

to INDI
topic.name (attribute) String unique name of the topic
topic.entry String context where the topic

will be bound in JNDI
(there can be many)

179

46

Project Information

The JBoss Messaging project page is here [http://www.jboss.org/jbossmessaging/]. Y ou can download any releases
from there.

If you have any user questions please use our user forum
[http://www.jboss.org/index.html ?modul e=bb& op=viewforum& f=238]

If you have development related questions, pleasse use our development forum
[http://www.jboss.org/index.html ?modul e=bb& op=viewforum& f=153]

Pop in and chat to usin our IRC channel [irc://irc.freenode.net:6667/jbossmessaging]
JBoss Messaging Subversion TRUNK is here [http://anonsvn.jboss.org/repos/messaging/trunk]
All our release tags are here [http://anonsvn.jboss.org/repos/messaging/tags]

Red Hat kindly employs developers to work full time on JBoss Messaging, the motley crew are:

e Tim Fox [http://jbossfox.blogspot.com] (project lead)
* Howard Gao

o Jeff Mesnil

* Clebert Suconic

* Andy Taylor

180

http://www.jboss.org/jbossmessaging/
http://www.jboss.org/index.html?module=bb&op=viewforum&f=238
http://www.jboss.org/index.html?module=bb&op=viewforum&f=153
irc://irc.freenode.net:6667/jbossmessaging
http://anonsvn.jboss.org/repos/messaging/trunk
http://anonsvn.jboss.org/repos/messaging/tags
http://jbossfox.blogspot.com

	JBoss Messaging 2.0 User Manual
	Table of Contents
	Chapter 1. Preface
	Chapter 2. Messaging Concepts
	2.1. Messaging Concepts
	2.2. Messaging styles
	2.2.1. The Message Queue Pattern
	2.2.2. The Publish-Subscribe Pattern

	2.3. Delivery guarantees
	2.4. Transactions
	2.5. Durability
	2.6. Messaging APIs and protocols
	2.6.1. Java Message Service (JMS)
	2.6.2. System specific APIs
	2.6.3. STOMP
	2.6.4. AMQP
	2.6.5. REST

	2.7. High Availability
	2.8. Clusters
	2.9. Bridges and routing

	Chapter 3. Architecture
	3.1. Core Architecture
	3.2. JBoss Messaging embedded in your own application
	3.3. JBoss Messaging integrated with a JEE application server
	3.4. JBoss Messaging stand-alone server

	Chapter 4. Using the Server
	4.1. Starting and Stopping the standalone server
	4.2. Server JVM settings
	4.3. Server classpath
	4.4. Library Path
	4.5. System properties
	4.6. Configuration files
	4.7. JBoss Microcontainer Beans File
	4.8. The main configuration file.

	Chapter 5. Using JMS
	5.1. A simple ordering system
	5.2. JMS Server Configuration
	5.3. JNDI configuration
	5.4. The code
	5.5. Directly instantiating JMS Resources without using JNDI
	5.6. Setting The Client ID
	5.7. Setting The Batch Size for DUPS_OK
	5.8. Setting The Transaction Batch Size

	Chapter 6. Using Core
	6.1. Core Messaging Concepts
	6.1.1. Message
	6.1.2. Address
	6.1.3. Queue
	6.1.4. ClientSessionFactory
	6.1.5. ClientSession
	6.1.6. ClientConsumer
	6.1.7. ClientProducer

	6.2. A simple example of using Core

	Chapter 7. Mapping JMS Concepts to the Core API
	Chapter 8. The Client Classpath
	8.1. Pure Core Client
	8.2. JMS Client
	8.3. JNDI

	Chapter 9. Examples
	9.1. JMS Examples
	9.1.1. Application-Layer Failover
	9.1.2. Automatic (Transparent) Failover
	9.1.3. Automatic Reconnect
	9.1.4. Browser
	9.1.5. Core Bridge Example
	9.1.6. Client Kickoff
	9.1.7. Client Side Load-Balancing
	9.1.8. Clustered Queue
	9.1.9. Clustered Standalone
	9.1.10. Clustered Topic
	9.1.11. Dead Letter
	9.1.12. Delayed Redelivery
	9.1.13. Divert
	9.1.14. Durable Subscription
	9.1.15. Embedded
	9.1.16. HTTP Transport
	9.1.17. Instantiate JMS Objects Directly
	9.1.18. Interceptor
	9.1.19. JAAS
	9.1.20. JMX Management
	9.1.21. Large Message
	9.1.22. Last-Value Queue
	9.1.23. Load Balanced Clustered Queue
	9.1.24. Management
	9.1.25. Management Notification
	9.1.26. Message Consumer Rate Limiting
	9.1.27. Message Counter
	9.1.28. Message Expiration
	9.1.29. Message Group
	9.1.30. Message Producer Rate Limiting
	9.1.31. Message Priority
	9.1.32. Message Redistribution
	9.1.33. No Consumer Buffering
	9.1.34. Paging
	9.1.35. Pre-Acknowledge
	9.1.36. Queue
	9.1.37. Queue Requestor
	9.1.38. Queue with Message Selector
	9.1.39. Request-Response
	9.1.40. Scheduled Message
	9.1.41. Security
	9.1.42. Send Acknowledgements
	9.1.43. Static Message Selector
	9.1.44. Static Message Selector Using JMS
	9.1.45. SSL Transport
	9.1.46. Symmetric Cluster
	9.1.47. Temporary Queue
	9.1.48. Topic
	9.1.49. Topic Hierarchy
	9.1.50. Topic Selector 1
	9.1.51. Topic Selector 2
	9.1.52. Transactional Session
	9.1.53. XA Heuristic
	9.1.54. XA Receive
	9.1.55. XA Send
	9.1.56. XA with Transaction Manager

	9.2. Core API Examples
	9.2.1. Embedded

	9.3. Java EE Examples
	9.3.1. EJB/JMS Transaction
	9.3.2. HAJNDI (High Availability)
	9.3.3. Resource Adapter Configuration
	9.3.4. JMS Bridge
	9.3.5. MDB (Message Driven Bean)
	9.3.6. Servlet Transport
	9.3.7. Servlet SSL Transport
	9.3.8. XA Recovery

	Chapter 10. Routing Messages With Wild Cards
	Chapter 11. Understanding the JBoss Messaging Wildcard Syntax
	Chapter 12. Filter Expressions
	Chapter 13. Persistence
	13.1. Configuring the bindings journal
	13.2. Configuring the message journal
	13.3. Installing AIO
	13.4. Configuring JBoss Messaging for Zero Persistence

	Chapter 14. Configuring the Transport
	14.1. Understanding Acceptors
	14.2. Understanding Connectors
	14.3. Configuring the transport directly from the client side.
	14.4. Configuring the Netty transport
	14.4.1. Configuring Netty TCP
	14.4.2. Configuring Netty SSL
	14.4.3. Configuring Netty HTTP
	14.4.4. Configuring Netty Servlet

	Chapter 15. Dead Connections and Session Multiplexing
	15.1. Cleaning up Dead Connection Resources on the Server
	15.2. Detecting failure from the client side.
	15.3. Session Multiplexing

	Chapter 16. Resource Manager Configuration
	Chapter 17. Flow Control
	17.1. Consumer Flow Control
	17.1.1. Window-Based Flow Control
	17.1.1.1. Using Core API
	17.1.1.2. Using JMS

	17.1.2. Rate limited flow control
	17.1.2.1. Using Core API
	17.1.2.2. Using JMS

	17.2. Producer flow control
	17.2.1. Window based flow control
	17.2.2. Rate limited flow control
	17.2.2.1. Using Core API
	17.2.2.2. Using JMS

	Chapter 18. Command Buffering
	Chapter 19. Guarantees of Transactional and Non-Transactional Sends and Asynchronous Send Acknowledgements
	19.1. Guarantees of Transaction Completion
	19.2. Guarantees of Non Transactional Message Sends
	19.3. Guarantees of Non Transactional Acknowledgements
	19.4. Asynchronous Send Acknowledgements
	19.4.1. Asynchronous Send Acknowledgements

	Chapter 20. Message Redelivery and Undelivered Messages
	20.1. Delayed Redelivery
	20.1.1. Configuring Delayed Redelivery
	20.1.2. Example

	20.2. Dead Letter Addresses
	20.2.1. Configuring Dead Letter Addresses
	20.2.2. Dead Letter Properties
	20.2.3. Example

	20.3. Delivery Count Persistence

	Chapter 21. Message Expiry
	21.1. Message Expiry
	21.2. Configuring Expiry Addresses
	21.3. Configuring The Expiry Reaper Thread
	21.4. Example

	Chapter 22. Large Messages
	22.1. Configuring the server
	22.2. Setting the limits
	22.2.1. Using Core API
	22.2.2. Using JMS

	22.3. Streaming large messages
	22.3.1. Streaming over Core API
	22.3.2. Streaming over JMS

	22.4. Streaming Alternative
	22.5. Other Types of Messages
	22.6. Resending a large message
	22.7. Large message example

	Chapter 23. Paging
	23.1. Page Files
	23.2. Global Paging Mode
	23.2.1. Configuration

	23.3. Address Paging Mode
	23.3.1. Configuration

	23.4. Caution with Addresses with Multiple Queues
	23.5. Example

	Chapter 24. Queue Attributes
	24.1. Predefined Queues
	24.2. Using the API
	24.3. Configuring Queues Via Address Settings

	Chapter 25. Scheduled Messages
	25.1. Scheduled Delivery Property
	25.2. Example

	Chapter 26. Last-Value Queues
	26.1. Configuring Last-Value Queues
	26.2. Using Last-Value Property
	26.3. Example

	Chapter 27. Message Grouping
	27.1. Using Core API
	27.2. Using JMS
	27.3. Example

	Chapter 28. Pre-Acknowledge Mode
	28.1. Using PRE_ACKNOWLEDGE
	28.2. Example

	Chapter 29. Management
	29.1. The Management API
	29.1.1. Core Management API
	29.1.1.1. Core Server Management
	29.1.1.2. Core Address Management
	29.1.1.3. Core Queue Management
	29.1.1.4. Other Core Resources Management

	29.1.2. JMS Management API
	29.1.2.1. JMS Server Management
	29.1.2.2. JMS ConnectionFactory Management
	29.1.2.3. JMS Queue Management
	29.1.2.4. JMS Topic Management

	29.2. Using Management Via JMX
	29.2.1. Configuring JMX
	29.2.1.1. MBeanServer configuration

	29.2.2. Example

	29.3. Using Management Via Core API
	29.3.1. Configuring Core Management

	29.4. Using Management Via JMS
	29.4.1. Configuring JMS Management
	29.4.2. Example

	29.5. Management Cluster Credentials
	29.6. Management Notifications
	29.6.1. JMX Notifications
	29.6.2. Core Messages Notifications
	29.6.2.1. Configuring The Core Management Notification Address

	29.6.3. JMS Messages Notifications
	29.6.4. Example

	29.7. Message Counters
	29.7.1. Configuring Message Counters
	29.7.2. Example

	Chapter 30. Security
	30.1. Role based security for addresses
	30.2. Secure Sockets Layer (SSL) Transport
	30.3. Basic user credentials
	30.4. Changing the security manager
	30.5. JAAS Security Manager
	30.5.1. Example

	30.6. JBoss AS Security Manager
	30.7. Changing the Management Password for Clustering

	Chapter 31. Application Server Integration and Java EE
	31.1. Configuring Message Driven Beans
	31.1.1. Using Container Managed Transactions
	31.1.2. Using Bean Managed Transactions
	31.1.3. Using Message Selectors with MDB's

	31.2. Sending Messages from within J2EE components
	31.3. Configuring the JCA Adapter
	31.3.1. Adapter Global properties
	31.3.2. Adapter Outbound configuration
	31.3.3. Adapter Inbound configuration

	31.4. High Availability JNDI (HA-JNDI)
	31.5. The JMS Bridge
	31.5.1. JMS Bridge Parameters
	31.5.2. Source and Target Connection Factories
	31.5.3. Source and Target Destination Factories
	31.5.4. Quality Of Service
	31.5.4.1. AT_MOST_ONCE
	31.5.4.2. DUPLICATES_OK
	31.5.4.3. ONCE_AND_ONLY_ONCE
	31.5.4.4. Example

	31.6. XA Recovery
	31.6.1. XA Recovery Configuration
	31.6.1.1. Configuration Settings

	31.6.2. Example

	Chapter 32. Client Reconnection
	Chapter 33. Diverting and Splitting Message Flows
	33.1. Exclusive Divert
	33.2. Non-exclusive Divert

	Chapter 34. Core Bridges
	34.1. Configuring Bridges

	Chapter 35. Duplicate Message Detection
	35.1. Using Duplicate Detection for Message Sending
	35.2. Configuring the Duplicate ID Cache
	35.3. Duplicate Detection and Bridges
	35.4. Duplicate Detection and Cluster Connections
	35.5. Duplicate Detection and Paging

	Chapter 36. Clusters
	36.1. Clusters Overview
	36.2. Server discovery
	36.2.1. Broadcast Groups
	36.2.2. Discovery Groups
	36.2.3. Defining Discovery Groups on the Server
	36.2.4. Discovery Groups on the Client Side
	36.2.4.1. Configuring client discovery using JMS
	36.2.4.2. Configuring client discovery using Core

	36.3. Server-Side Message Load Balancing
	36.3.1. Configuring Cluster Connections

	36.4. Client-Side Load balancing
	36.5. Specifying Members of a Cluster Explicitly
	36.5.1. Specify List of Servers on the Client Side
	36.5.1.1. Specifying List of Servers using JMS
	36.5.1.2. Specifying List of Servers using the Core API

	36.5.2. Specifying List of Servers to form a Cluster

	36.6. Message Redistribution
	36.7. Cluster topologies
	36.7.1. Symmetric cluster
	36.7.2. Chain cluster

	Chapter 37. High Availability and Failover
	37.1. Server replication
	37.1.1. Configuring live-backup pairs
	37.1.2. Synchronization of live-backup pairs
	37.1.3. Queue activation timeout

	37.2. Automatic client failover
	37.3. Application-level client failover

	Chapter 38. Libaio Native Libraries
	38.1. Compiling the native libraries
	38.1.1. Install requirements
	38.1.2. Invoking the compilation

	Chapter 39. Thread management
	39.1. Server-Side Thread Management
	39.1.1. Server Scheduled Thread Pool
	39.1.2. General Purpose Server Thread Pool
	39.1.3. Expiry Reaper Thread
	39.1.4. Asynchronous IO

	39.2. Client-Side Thread Management

	Chapter 40. Logging
	40.1. Log4j Configuration
	40.2. Logging With The JBoss Application Server

	Chapter 41. Embedding JBoss Messaging
	41.1. POJO instantiation
	41.2. Dependency Frameworks
	41.3. Connecting to the Embedded JBoss Messaging
	41.3.1. Core API
	41.3.2. JMS API

	41.4. JMS Embedding Example

	Chapter 42. Intercepting Operations
	42.1. Implementing The Interceptors
	42.2. Configuring The Interceptors
	42.3. Example

	Chapter 43. Interoperability
	43.1. Stomp and StompConnect
	43.2. AMQP
	43.3. REST

	Chapter 44. Performance Tuning
	44.1. Tuning the journal
	44.2. Tuning JMS
	44.3. Other Tunings
	44.4. Tuning Transport Settings
	44.5. Tuning the VM
	44.6. Avoiding Anti-Patterns

	Chapter 45. Configuration Reference
	45.1. Server Configuration
	45.1.1. jbm-configuration.xml
	45.1.2. jbm-jms.xml

	Chapter 46. Project Information

